Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 466: 133533, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38286046

RESUMEN

Antibiotic resistance poses a global environmental challenge that jeopardizes human health and ecosystem stability. Antibiotic resistant bacteria (ARB) significantly promote the spreading and diffusion of antibiotic resistance. This study investigated the efficiency and mechanism of inactivating tetracycline-resistant Escherichia coli (TR E. coli) using Fe3O4 @MoS2 activated persulfate (Fe3O4 @MoS2/PS). Under optimized conditions (200 mg/L Fe3O4 @MoS2, 4 mM PS, 35 °C), TR E. coli (∼7.5 log CFU/mL) could be fully inactivated within 20 min. The primary reactive oxygen species (ROS) responsible for TR E. coli inactivation in the Fe3O4 @MoS2/PS system were hydroxyl radicals (•OH) and superoxide radicals (•O2-). Remarkably, the efflux pump protein was targeted and damaged by the generated ROS during the inactivation process, resulting in cell membrane rupture and efflux of cell content. Additionally, the horizontal transmission ability of residual antibiotic resistance genes (ARGs) harboring in the TR E. coli was also reduced after the inactivation treatment. This study offers an efficient approach for TR E. coli inactivation and substantial mitigation of antibiotic resistance dissemination risk.


Asunto(s)
Antibacterianos , Escherichia coli , Humanos , Antibacterianos/farmacología , Escherichia coli/genética , Molibdeno , Especies Reactivas de Oxígeno , Ecosistema , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Bacterias/genética , Tetraciclina , Farmacorresistencia Microbiana/genética , Genes Bacterianos
2.
Toxics ; 11(7)2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37505569

RESUMEN

Over the past few decades, acetaminophen (ACT), a typical nonsteroidal anti-inflammatory drug (NSAID), has gained global usage, positioning itself as one of the most extensively consumed medications. However, the incomplete metabolism of ACT leads to a substantial discharge into the environment, classifying it as an environmental contaminant with detrimental effects on non-target organisms. Various wastewater treatment technologies have been developed for ACT removal to mitigate its potential environmental risk. Particularly, photocatalytic technology has garnered significant attention as it exhibits high efficiency in oxidizing and degrading a wide range of organic pollutants. This comprehensive review aims to systematically examine and discuss the application of photocatalytic technology for the removal of ACT from aqueous environments. Additionally, the study provides a detailed overview of the limitations associated with the photocatalytic degradation of ACT in practical applications, along with effective strategies to address these challenges.

3.
Biochim Biophys Acta Gene Regul Mech ; 1866(3): 194962, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37499935

RESUMEN

Tudor domain-containing protein 3 (TDRD3) is involved in regulating transcription and translation, promoting breast cancer progression, and modulating neurodevelopment and mental health, making it a promising therapeutic target for associated diseases. The Tudor domain of TDRD3 is essential for its biological functions, and targeting this domain with potent and selective chemical probes may modulate its engagement with chromatin and related functions. Here we reported a study of TDRD3 antagonist following on our earlier work on the development of the SMN antagonist, Compound 1, and demonstrated that TDRD3 can bind effectively to Compound 2, a triple-ring analog of Compound 1. Our structural analysis suggested that the triple-ring compound bound better to TDRD3 due to its smaller side chain at Y566 compared to W102 in SMN. We also revealed that adding a small hydrophobic group to the N-methyl site of Compound 1 can improve binding. These findings provide a path for identifying antagonists for single canonical Tudor domain-containing proteins such as TDRD3 and SMN.


Asunto(s)
Cromatina , Proteínas , Dominio Tudor , Proteínas/química
4.
Sci Total Environ ; 858(Pt 3): 160170, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36379335

RESUMEN

The sluggish kinetics of oxygen evolution reaction (OER) is the bottleneck of alkaline water electrolysis. The urea oxidation reaction (UOR) with much faster kinetics was to replace OER. To further promote UOR, a heterojunction structure assembled of CoSx and MoOx was established, and then its superior catalytic activity was predicted by DFT calculation. After that, an ultra-thin CoSx-MoOx@nickel foam (CoSx-MoOx@NF) electrode with a Mott-Schottky structure was prepared via a facile hydrothermal method, followed by a low-temperature vulcanization. Results highlighted CoSx-MoOx@NF electrode presented a superior performance toward UOR, OER, and H2 evolution reaction (HER). Notably, it exhibited excellent electrocatalytic performance for OER (1.32 V vs. RHE, 10 mA cm-2), UOR (1.305 V vs. RHE, 10 mA cm-2), and urea-assisted overall water splitting with a low voltage (1.38 V, 10 mA cm-2) when CoSx-MoOx@NF electrode served as both anode and cathode. It is promising to use CoSx-MoOx@NF in an electrochemical system integrated with H2 generation and urea-rich wastewater purification.


Asunto(s)
Electrólisis , Urea , Electrodos , Oxígeno , Agua
5.
Bioresour Technol ; 347: 126378, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34808315

RESUMEN

Polyhydroxyalkanoate (PHA) producer selection is a key step in mixed culture (MC) production. This study focused on incompatibility between PHA storage and floc settling of MCs in the selection process. In a selector using fermented waste activated sludge as substrate under varying organic loading, average maximum PHA content obtained in batch assays increased by âˆ¼ 22 wt% and biomass concentration increased by âˆ¼ 34% with the increasing of organic loading. However, poor floc settling occurred, causing decreased batch PHA production and costly downstream process. A flank community which can corporately use non-VFA organics existed in the selector. When organic loading increased, PHA producers had stronger negative interactions, but not cooperation with the flank community members. Thus, high PHA storage of MCs was bounded to the domination of core PHA producer. But the domination of Thauera bacteria under high organic loading indirectly induced a bloom of filamentous bacteria.


Asunto(s)
Polihidroxialcanoatos , Biomasa , Reactores Biológicos , Carbono , Aguas del Alcantarillado
6.
Front Pharmacol ; 12: 760338, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34819861

RESUMEN

Objective: The iridoid glycosides were extracted and separated from Osmanthus fragrans seeds, and the potential protective effect of Osmanthus fragrans seed extract on concanavalin A-induced immune liver injury in mice was studied. Methods: Osmanthus fragrans seeds were extracted by 95% ethanol reflux. Then, the iridoid glycosides were enriched by extraction refined through petroleum ether (60°C-90°C), ethyl acetate, and water-saturated n-butanol in sequence, so as to purify the n-butanol part (Osmanthus fragrans seed's n-butanol extraction, OFSN) by macroporous resin. Specnuezhenide and Nuezhenoside G13 were used as the reference substances to determine the concentration of iridoid glycosides by HPLC. On this basis, a mouse immune liver injury model was established by tail intravenous concanavalin A (20 mg/kg); the contents of serum ALT, AST, IFN-γ, and TNF-α and the contents of liver tissue MDA and SOD were determined; the pathological changes of the liver by HE staining were observed; and the expression levels of p38MAPK and p-p38mapk in liver tissue were detected by WB. Results: The linearity, precision, repeatability, recovery, and stability of HPLC all met the requirements by validating with the methodology. The contents of Specnuezhenide and Nuezhenoside G13 in the n-butanol extracts were 39.20% and 39.88%, respectively. Actually, their contents can reach up to 82.56% and 87.9% after being purified by macroporous resin. The results of animal experiments show that OFSN could significantly reduce the liver and spleen index, reduce the ALT and AST contents in plasma and the MDA content in liver tissue, and then increase the SOD content. Besides, OFSN could also reduce the plasma IFN-γ and TNF-α levels. The HE staining result indicates that the pathological changes in the liver tissues of mice treated with OFSN are alleviated to different degrees while the WB result suggests that OFSN could significantly inhibit the expression of p-p38mapk. Conclusion: Osmanthus fragrans seeds are rich in iridoid glycosides, which has a good protective effect on mouse immune liver injury caused by concanavalin A. The mechanism may be related to inhibiting the phosphorylation of p38MAPK, inhibiting the release of inflammatory mediators, improving the antioxidant capacity of liver cells, and weakening the occurrence of lipid peroxidation.

7.
ACS Appl Mater Interfaces ; 11(1): 541-549, 2019 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-30561190

RESUMEN

The shuttling phenomena in lithium-sulfur batteries lead to drastic attenuation of the capacity. This can be suppressed effectively by modifying the separator. Herein, a double-layered separator composed of a macroporous polypropylene (PP) matrix layer and an arrayed poly(methyl methacrylate) (PMMA) microsphere retarding layer is designed as the separator for lithium-sulfur batteries. A sulfur positive electrode with the PP/PMMA separator exhibits a high initial capacity of 1100.10 mAh g-1 at a current density of 0.1 mA cm-2 along with a high Coulombic efficiency, which is higher than the corresponding first discharge capacity results obtained using the standard PP separator (948.60 mAh g-1). In the double-layered separator, the arrayed PMMA microspheres can inhibit the diffusion of polysulfides through physical and chemical adsorption, thereby improving the electrochemical performance of lithium-sulfur batteries. In addition, the PMMA microspheres enhance the affinity of the separator to the electrolyte, which will increase the adsorption of the electrolyte to the separator and accelerate the diffusion rate of lithium ions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...