Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 668: 98-109, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38670000

RESUMEN

Developing cost-effective monolith catalyst with superior low-temperature activity is critical for oxidative efficacious removal of industrial volatile organic compounds (VOCs). However, the complexity of the industrial flue gas conditions demands the need for high moisture tolerance, which is challenging. Herein, CoMn-Metal Organic Framework (CoMn-MOF) was in situ grown on Ni foam (NiF) at room temperature to synthesize the cost-effective monolith catalyst. The optimized catalyst, Co1Mn1/NiF, exhibited excellent performance in toluene oxidation (T90 = 239 °C) due to the substitution of manganese into the cobalt lattice. This substitution weakened the Co-O bond strength, creating more oxygen vacancies and increasing the active oxygen species content. Additionally, experimentally and computationally evidence revealed that the mutual inhibiting effect of three typical aromatic hydrocarbons (benzene, toluene and m-xylene) over the Co1Mn1/NiF catalyst was attributed to the competitive adsorption occurring on the active site. Furthermore, the Co1Mn1/NiF catalyst also presents outstanding water resistance, particularly at a concentration of 3 vol%, where the activity is even enhanced. This was attributed to the lower water adsorption and dissociation energy derived from the interaction between the bimetals. Results demonstrate that the dissociation of water vapor enables more reactive oxygen species to participate in the reaction which reduces the formation of intermediates and facilitates the reaction. This investigation provides new insights into the preparation of oxygen vacancy-rich monolith catalysts with high water resistance for practical applications.

2.
Huan Jing Ke Xue ; 44(2): 626-633, 2023 Feb 08.
Artículo en Chino | MEDLINE | ID: mdl-36775587

RESUMEN

Based on stable isotope technology and a PMF model, the pollution characteristics and sources of carbon and nitrogen components in ambient PM2.5 in Huangshi City were explored. The results showed that the total carbon concentration[ρ(TC)] and the total carbon isotopic composition (δ13CTC) in ambient PM2.5 in Huangshi City both showed seasonal variation characteristics of being high in winter and low in summer, with values of (4.4±1.2) µg·m-3 and (-26.3±0.5)‰ in summer and (9.9±3.5) µg·m-3 and (-25.5±0.5)‰ in winter, respectively. The total nitrogen concentration[ρ(TN)]was significantly lower in summer[(9.1±9.1) µg·m-3]than that in winter[(62.4±26.4) µg·m-3], whereas the total nitrogen isotopic composition (δ15NTN) was obviously enriched in summer[(12.8±1.9)‰]compared with that in winter[(2.9±4.0)‰]. In addition to the contribution from local sources, the carbon and nitrogen components were mainly affected by the short-range regional emission in northern Hunan and the long-distance transport in the northwest. The MixSIAR model and the PMF model indicated that the vehicle emission source was the main source of carbon components in PM2.5, with contribution rates of 38.9% and 39.3%, respectively. MixSIAR results showed that NOx emission sources had a greater impact on nitrogen components in PM2.5 of different seasons than NH3 emission sources, and their contribution was higher in summer (80%) than that in winter (66.8%), among which the NOx emissions from coal combustion (summer:36.1%; winter:20.2%) had the largest contribution. By contrast, the PMF model indicated that the main source of nitrogen components was vehicle emissions (59.8%). Combining multiple models to overcome the uncertainty and subjectivity of single-model analysis can provide a theoretical basis for actively controlling and reducing fine particulate matter emissions and effectively dealing with urban aerosol pollution.

3.
Sci Total Environ ; 834: 155002, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35398423

RESUMEN

The dry impinger method is commonly used for the determination of condensable particulate matter (CPM) emissions. The coil and chamber condenser is used to build different dry impinger methods for CPM sampling. The comparative analysis of coil and chamber condenser is performed in a laboratory experiment to evaluate the deviation caused by SO2. Results showed that the positive deviation caused by SO2 in the chamber condenser is lower than that in the coil condenser under the same sampling conditions, especially under high humidity flue gas. The CPM emission characteristics from Hanchuan coal-fired power plant (CFPP) determined by both dry impinger methods are also investigated as well. The CPM and its most water-soluble ions (e.g., F-, Cl-, NO3-, SO42-, Na+, Ca2+ and NH4+) measured by method #2 (chamber condenser) are higher than that of method #1 (coil condenser). In addition, the esters in the CPM also increased with the CPM concentrations. Based on above evidences, it can be inferred that the dry impinger method with chamber condenser, will be recommended as the appropriate method for measuring CPM emitted from stationary sources, especially under the high humidity flue gas conditions.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Contaminantes Atmosféricos/análisis , Carbón Mineral/análisis , Iones/análisis , Material Particulado/análisis , Centrales Eléctricas
4.
Huan Jing Ke Xue ; 43(4): 1808-1813, 2022 Apr 08.
Artículo en Chino | MEDLINE | ID: mdl-35393804

RESUMEN

In order to study the effect of wet electrostatic precipitators(WESP) on emission characteristics of condensable particulate matter (CPM) from ultra-low emission coal-fired power plants that are under different capacity conditions, a set of CPM sampling devices was built based on US EPA Method 202, and an ultra-low emission coal-fired power plant was detected. This study evaluated the emission level of the CPM from the flue gas of coal-fired power plants, the effects of different unit capacity conditions on the CPM emission concentrations, and the removal efficiency of WESP for different components of the CPM. The results suggested that the emission concentrations of the CPM from ultra-low emission power plants were 27.27 mg·m-3 and 28.71 mg·m-3under the conditions of 75% and 100% capacity, respectively. The removal efficiencies of WESP for the CPM were 35.59% and 27.59%, respectively. SO42- was the main component of water-soluble ions of the CPM. The proportion of SO42- in inorganic components of the CPM reached more than 65% under different capacity conditions. In addition, the removal efficiency of WESP for Cl-, K+, Ca2+, Mg2+, Na+, and other inorganic ions reached 30%-50%, but the mass concentrations of SO42- and NO3- increased.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Contaminantes Atmosféricos/análisis , Carbón Mineral/análisis , Iones , Material Particulado/análisis , Centrales Eléctricas
5.
Chemosphere ; 299: 134298, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35331745

RESUMEN

Total suspended particles (TSP) and gaseous samples were collected by using a high-volume sampler from March 2012 to March 2013 and January 2018 to January 2019 at a background site (Jinsha, JSH) in central China to study the chemical characteristics, seasonal variations, and potential sources of polycyclic aromatic hydrocarbons (PAHs). The average concentrations of ∑15PAHs were 24.55 ± 9.19 ng m-3 in 2012/2013 and 20.98 ± 9.77 ng m-3 in 2018/2019. Low-ring PAHs were more concentrated in gas phase while high-ring PAHs were prone into particle phase. The concentrations of PAHs in the two sampling years were high in winter but low in summer and autumn. The relationships between the gas concentrations of PAHs and temperature indicated that most PAHs were influenced by long-range atmospheric transport (LRAT) in 2012/2013 and in 2018/2019, excluding anthracene (Ant) and pyrene (Pyr) were partially affected by air-surface re-volatilization in 2012/2013. The source of atmospheric PAHs at JSH was similar in 2012/2013 and 2018/2019,which was mainly due to the LRAT of PAHs emitted from biomass/fossil fuel combustion in the northern area of JSH. From 2012/2013 to 2018/2019, there was no significant difference between the concentrations of PAHs in spring and winter, whereas the concentrations of PAHs decreased from 2012/2013 to 2018/2019 in summer. In all, the control of PAHs at the source region was partially effective from 2012/2013 to 2018/2019.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Contaminantes Atmosféricos/análisis , China , Monitoreo del Ambiente , Gases , Material Particulado/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Estaciones del Año
6.
Artículo en Inglés | MEDLINE | ID: mdl-32012837

RESUMEN

Understanding the sources of volatile organic compounds (VOCs) is essential in the implementation of abatement measures of ground-level ozone and secondary organic aerosols. In this study, we conducted offline VOC measurements at residential, industrial, and background sites in Wuhan City from July 2016 to June 2017. Ambient samples were simultaneously collected at each site and were analyzed using a gas chromatography-mass spectrometry/flame ionization detection system. The highest mixing ratio of total VOCs was measured at the industrial site, followed by the residential, and background sites. Alkanes constituted the largest percentage (>35%) in the mixing ratios of quantified VOCs at the industrial and residential sites, followed by oxy-organics and alkenes (15-25%).The values of aromatics and halohydrocarbons were less than 15%. By contrast, the highest values of oxy-organics accounted for more than 30%. The model of positive matrix factorization was applied to identify the VOC sources and quantify the relative contributions of various sources. Gasoline-related emission (the combination of gasoline exhaust and gas vapor) was the most important VOC-source in the industrial and residential areas, with a relative contribution of 32.1% and 40.4%, respectively. Industrial process was the second most important source with a relative contribution ranging from 30.0% to 40.7%. The relative contribution of solvent usage was 6.5-22.3%. Meanwhile, the relative contribution of biogenic emission was only within the range of 2.0-5.0%. These findings implied the importance of controlling gasoline-related and industrial VOC emissions in reducing the VOC emissions in Wuhan.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Compuestos Orgánicos Volátiles/análisis , China , Ciudades , Ozono/análisis , Análisis Espacio-Temporal , Emisiones de Vehículos
7.
Environ Sci Pollut Res Int ; 26(31): 31934-31944, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31489547

RESUMEN

Jinsha (JSH) is one of the regional background sites in Central China. In this study, eight polybrominated diphenyl ethers (PBDEs) were measured in atmospheric deposition samples (dry particle, wet particle, and wet dissolved), air (gaseous and particle) samples, and soil samples that were collected from March 2012 to March 2013. Of all eight PBDEs, BDE-209 was the most abundant congener in both deposition samples and air/soil samples. Average dry particle, wet particle, and wet dissolved deposition fluxes of Σ8PBDEs were 270 ± 310 pg m-2 day-1, 130 ± 210 pg m-2 day-1, and 250 ± 330 pg m-2 day-1, respectively, while those of BDE-209 were 210 ± 290 pg m-2 day-1, 80 ± 120 pg m-2 day-1, and 160 ± 290 pg m-2 day-1, respectively. Dry deposition velocities of individual PBDE ranged from 0.11 ± 0.15 cm s-1 (BDE-183) to 0.24 ± 0.38 cm s-1 (BDE-209), and total washout ratios ranged from 5.0 × 103 (BDE-28) to 4.2 × 104 (BDE-209). The calculated net air-soil gas exchange flux of Σ8PBDEs was - 16 ± 13 pg m-2 day-1, suggesting the deposition status of PBDEs. The gas exchange flux at the air-soil interface was significantly lower than the deposition flux, which only accounted for 2.5% of the total deposition flux, implying that atmospheric deposition was an important input pathway for PBDEs to soils. Overall, the pollution level of the soil was relatively low, and the soil serves as a sink for PBDEs from adjacent regions.


Asunto(s)
Éteres Difenilos Halogenados/análisis , Bifenilos Polibrominados/química , China , Monitoreo del Ambiente , Contaminación Ambiental , Éteres Difenilos Halogenados/química , Suelo
8.
Chemosphere ; 186: 475-487, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28806676

RESUMEN

Ambient air and soil samples were collected between March 2012 and March 2013 at Jinsha, a regional background site in central China, to measure the concentrations of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs). The average concentrations of total OCPs and total PCBs were 191 ± 107 and 39.4 ± 27.1 pg/m3 in air (gaseous and particulate phase) and 0.585 ± 0.437 and 0.083 ± 0.039 ng/g in soil, respectively. The higher concentrations of p,p'-dichlorodiphenyltrichloroethane (p,p'-DDT) and p,p'-DDT/p,p'-DDE ratios in the soil indicated recent p,p'-DDT input to the soil. A strong positive temperature dependence and average fugacity fraction value > 0.5 were observed for p,p'-DDT, suggesting that volatilization of residual DDT in the soil was the main influencing factor on atmospheric p,p'-DDT. Highly average fugacity fractions (>0.7) of trans-chlordane (TC) and cis-chlordane (CC) and high TC/CC ratios both in the soil and atmosphere suggested fresh inputs. Higher gaseous concentrations of hexachlorobenzene (HCB) were observed in winter and negative temperature dependence was directly attributed to the surrounding ongoing source (e.g. fuel consuming activities), especially in winter. Overall, most targeted OCPs and PCBs were influenced by long-range transport, and fugacity fraction values indicated highly volatile compounds (e.g. α-hexachlorocyclohexane (α-HCH) and lower chlorinated PCBs) were volatilized and low volatility compounds (e.g. p,p'-DDE and higher chlorinated PCBs) were deposited at the air-soil interface. Knowing the source and sink of OCPs and PCBs can help to control their pollution in this area and provide a reference for other studies.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Hidrocarburos Clorados/análisis , Plaguicidas/análisis , Bifenilos Policlorados/análisis , Contaminantes del Suelo/análisis , Atmósfera/química , China , Estaciones del Año , Suelo/química
9.
Sci Total Environ ; 518-519: 97-105, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25747369

RESUMEN

PM2.5 samples were collected at an urban site (WD) and a suburban site (TH) in Wuhan from August 2012 to July 2013. The mass concentrations of water-soluble inorganic ions, carbonaceous species and elements of PM2.5 were measured. The annual mean concentrations of PM2.5 were 106.5 µg/m(3) and 114.9 µg/m(3) at WD and TH, respectively. The chemical compositions of PM2.5 at WD were similar to those at TH and the fractions of the major components of PM2.5 in Wuhan were in the following order of trace elements

Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Material Particulado/análisis , Contaminación del Aire/estadística & datos numéricos , China , Estaciones del Año , Oligoelementos/análisis , Emisiones de Vehículos/análisis
10.
J Environ Sci (China) ; 26(4): 810-7, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25079411

RESUMEN

In January 2013, a long-lasting severe haze episode occurred in Northern and Central China; at its maximum, it covered a land area of approximately 1.4 million km(2). In Wuhan, the largest city in Central China, this event was the most severe haze episode in the 21st century. Aerosol samples of submicron particles (PM1.0) were collected during the long-lasting haze episode at an urban site and a suburban site in Wuhan to investigate the ion characteristics of PM1.0 in this area. The mass concentrations of PM1.0 and its water-soluble inorganic ions (WSIIs) were almost at the same levels at two sites, which indicates that PM1.0 pollution occurs on a regional scale in Wuhan. WSIIs (Na(+), NH4(+), K(+), Mg(2+), Ca(2+), Cl(-), NO3(-) and SO4(2-)) were the dominant chemical species and constituted up to 48.4% and 47.4% of PM1.0 at WD and TH, respectively. The concentrations of PM1.0 and WSIIs on haze days were approximately two times higher than on normal days. The ion balance calculations indicate that the particles were more acidic on haze days than on normal days. The results of the back trajectory analysis imply that the high concentrations of PM1.0 and its water-soluble inorganic ions may be caused by stagnant weather conditions in Wuhan.


Asunto(s)
Contaminación del Aire/análisis , Iones/análisis , Material Particulado/química , China , Ciudades/estadística & datos numéricos , Tiempo (Meteorología)
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...