Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.257
Filtrar
1.
Neural Regen Res ; 20(1): 277-290, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38767492

RESUMEN

JOURNAL/nrgr/04.03/01300535-202501000-00035/figure1/v/2024-05-14T021156Z/r/image-tiff Our previous study found that rat bone marrow-derived neural crest cells (acting as Schwann cell progenitors) have the potential to promote long-distance nerve repair. Cell-based therapy can enhance peripheral nerve repair and regeneration through paracrine bioactive factors and intercellular communication. Nevertheless, the complex contributions of various types of soluble cytokines and extracellular vesicle cargos to the secretome remain unclear. To investigate the role of the secretome and extracellular vesicles in repairing damaged peripheral nerves, we collected conditioned culture medium from hypoxia-pretreated neural crest cells, and found that it significantly promoted the repair of sensory neurons damaged by oxygen-glucose deprivation. The mRNA expression of trophic factors was highly expressed in hypoxia-pretreated neural crest cells. We performed RNA sequencing and bioinformatics analysis and found that miR-21-5p was enriched in hypoxia-pretreated extracellular vesicles of neural crest cells. Subsequently, to further clarify the role of hypoxia-pretreated neural crest cell extracellular vesicles rich in miR-21-5p in axonal growth and regeneration of sensory neurons, we used a microfluidic axonal dissociation model of sensory neurons in vitro, and found that hypoxia-pretreated neural crest cell extracellular vesicles promoted axonal growth and regeneration of sensory neurons, which was greatly dependent on loaded miR-21-5p. Finally, we constructed a miR-21-5p-loaded neural conduit to repair the sciatic nerve defect in rats and found that the motor and sensory functions of injured rat hind limb, as well as muscle tissue morphology of the hind limbs, were obviously restored. These findings suggest that hypoxia-pretreated neural crest extracellular vesicles are natural nanoparticles rich in miRNA-21-5p. miRNA-21-5p is one of the main contributors to promoting nerve regeneration by the neural crest cell secretome. This helps to explain the mechanism of action of the secretome and extracellular vesicles of neural crest cells in repairing damaged peripheral nerves, and also promotes the application of miR-21-5p in tissue engineering regeneration medicine.

2.
Nat Prod Res ; : 1-6, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949790

RESUMEN

Chemical investigation of the wild mushroom Entoloma clypeatum led to the isolation of one new A-nor B-aromatic C28 steroid (1), along with eight known compounds (2-9) from this mushroom. As far as we know, compound 1 represents an unprecedented type of natural product. The structure of the new compound was elucidated based on extensive spectroscopic data analysis of HR-ESI-MS, 1D, and 2D NMR, while the relative configuration was confirmed by NOESY correlations. In addition, the anti-inflammatory activity of compound 1 was evaluated against LPS induced NO production in RAW 264.7 macrophages. Compound 1 exhibited a moderate anti-inflammatory activity with an IC50 value of 24.56 ± 1.72 µM.

3.
Cancer Manag Res ; 16: 711-730, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952353

RESUMEN

Purpose: Low-grade gliomas (LGG) are common brain tumors with high mortality rates. Cancer cell invasion is a significant factor in tumor metastasis. Novel biomarkers are urgently needed to predict LGG prognosis effectively. Methods: The data for LGG were obtained from the Bioinformatics database. A consensus clustering analysis was performed to identify molecular subtypes linked with invasion in LGG. Differential expression analysis was performed to identify differentially expressed genes (DEGs) between the identified clusters. Enrichment analyses were then conducted to explore the function for DEGs. Prognostic signatures were placed, and their predictive power was assessed. Furthermore, the invasion-related prognostic signature was validated using the CGGA dataset. Subsequently, clinical specimens were procured in order to validate the expression levels of the distinct genes examined in this research, and to further explore the impact of these genes on the glioma cell line LN229 and HS-683. Results: Two invasion-related molecular subtypes of LGG were identified, and we sifted 163 DEGs between them. The enrichment analyses indicated that DEGs are mainly related to pattern specification process. Subsequently, 10 signature genes (IGF2BP2, SRY, CHI3L1, IGF2BP3, MEOX2, ABCC3, HOXC4, OTP, METTL7B, and EMILIN3) were sifted out to construct a risk model. Besides, the survival (OS) in the high-risk group was lower. The performance of the risk model was verified. Furthermore, a highly reliable nomogram was generated. Cellular experiments revealed the ability to promote cell viability, value-addedness, migratory ability, invasive ability, and colony-forming ability of the glioma cell line LN229 and HS-683. The qRT-PCR analysis of clinical glioma samples showed that these 10 genes were expressed at higher levels in high-grade gliomas than in low-grade gliomas, suggesting that these genes are associated with poor prognosis of gliomas. Conclusion: Our study sifted out ten invasion-related biomarkers of LGG, providing a reference for treatments and prognostic prediction in LGG.

4.
Cell Stem Cell ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38955185

RESUMEN

Mitochondria are key regulators of hematopoietic stem cell (HSC) homeostasis. Our research identifies the transcription factor Nynrin as a crucial regulator of HSC maintenance by modulating mitochondrial function. Nynrin is highly expressed in HSCs under both steady-state and stress conditions. The knockout Nynrin diminishes HSC frequency, dormancy, and self-renewal, with increased mitochondrial dysfunction indicated by abnormal mPTP opening, mitochondrial swelling, and elevated ROS levels. These changes reduce HSC radiation tolerance and promote necrosis-like phenotypes. By contrast, Nynrin overexpression in HSCs diminishes irradiation (IR)-induced lethality. The deletion of Nynrin activates Ppif, leading to overexpression of cyclophilin D (CypD) and further mitochondrial dysfunction. Strategies such as Ppif haploinsufficiency or pharmacological inhibition of CypD significantly mitigate these effects, restoring HSC function in Nynrin-deficient mice. This study identifies Nynrin as a critical regulator of mitochondrial function in HSCs, highlighting potential therapeutic targets for preserving stem cell viability during cancer treatment.

5.
Ann Hematol ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38955826

RESUMEN

We aimed to evaluate if circulating plasma cells (CPC) detected by flow cytometry could add prognostic value of R2-ISS staging. We collected the electronic medical records of 336 newly diagnosed MM patients (NDMM) in our hospital from January 2017 to June 2023. The median overall survival (OS) for patients and R2-ISS stage I-IV were not reached (NR), NR, 58 months and 53 months, respectively. There was no significant difference in OS between patients with stage I and patients with stage II (P = 0.309) or between patients with stage III and patients with stage IV (P = 0.391). All the cases were re-classified according to R2-ISS stage and CPC numbers ≥ 0.05% (CPC high) or<0.05% (CPC low) into four new risk groups: Group 1: R2-ISS stage I + R2-ISS stage II and CPC low, Group 2: R2-ISS stage II and CPC high + R2-ISS stage III and CPC low, Group 3: R2-ISS stage III and CPC high + R2-ISS stage IV and CPC low, Group 4: R2-ISS stage IV and CPC high. The median OS were NR, NR, 57 months and 32 months. OS of Group 1 was significantly longer than that of Group 2 (P = 0.033). OS in Group 2 was significantly longer than that of Group 3 (P = 0.007). OS in Group 3 was significantly longer than that of Group 4 (P = 0.041). R2-ISS staging combined with CPC can improve risk stratification for NDMM patients.

6.
Elife ; 122024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954462

RESUMEN

Perceiving biological motion (BM) is crucial for human survival and social interaction. Many studies have reported impaired BM perception in autism spectrum disorder, which is characterised by deficits in social interaction. Children with attention deficit hyperactivity disorder (ADHD) often exhibit similar difficulties in social interaction. However, few studies have investigated BM perception in children with ADHD. Here, we compared differences in the ability to process local kinematic and global configurational cues, two fundamental abilities of BM perception, between typically developing and ADHD children. We further investigated the relationship between BM perception and social interaction skills measured using the Social Responsiveness Scale and examined the contributions of latent factors (e.g. sex, age, attention, and intelligence) to BM perception. The results revealed that children with ADHD exhibited atypical BM perception. Local and global BM processing showed distinct features. Local BM processing ability was related to social interaction skills, whereas global BM processing ability significantly improved with age. Critically, general BM perception (i.e. both local and global BM processing) may be affected by sustained attentional ability in children with ADHD. This relationship was primarily mediated by reasoning intelligence. These findings elucidate atypical BM perception in ADHD and the latent factors related to BM perception. Moreover, this study provides new evidence that BM perception is a hallmark of social cognition and advances our understanding of the potential roles of local and global processing in BM perception and social cognitive disorders.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Percepción de Movimiento , Humanos , Trastorno por Déficit de Atención con Hiperactividad/fisiopatología , Trastorno por Déficit de Atención con Hiperactividad/psicología , Niño , Masculino , Femenino , Percepción de Movimiento/fisiología , Interacción Social , Adolescente , Atención/fisiología
7.
Inorg Chem ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38959250

RESUMEN

Anthrax bacillus is a very dangerous zoonotic pathogen that seriously endangers public health. Rapid and accurate qualitative and quantitative detection of its biomarkers, 2,6-dipicolinic acid (DPA), is crucial for the prevention and treatment of this pathogenic bacterium. In this work, a novel Cd-based MOF (TTCA-Cd) has been synthesized from a polycarboxylate ligand, [1,1':2',1″-terphenyl]-4,4',4″,5'-tetracarboxylic acid (H4TTCA), and further doped with Tb(III), forming a dual-emission lanthanide-functionalized MOF hybrid (TTCA-Cd@Tb). TTCA-Cd@Tb can be developed as a high-performance ratiometric fluorescent sensor toward DPA with a very low detection limit of 7.14 nM and high selectivity in a wide detection range of 0-200 µM, demonstrating a big advancement and providing a new option for the detection of DPA.

8.
Environ Sci Technol ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38959431

RESUMEN

Short carbon chain alkanes, as typical volatile organic compounds (VOCs), have molecular structural stability and low molecular polarity, leading to an enormous challenge in the catalytic oxidation of propane. Although Ru-based catalysts exhibit a surprisingly high activity for the catalytic oxidation of propane to CO2 and H2O, active RuOx species are partially oxidized and sintered during the oxidation reaction, leading to a decrease in catalytic activity and significantly inhibiting their application in industrial processes. Herein, the Ru/Ce@Co catalyst is synthesized with a specific structure, in which cerium dioxide is dispersed in a thin layer on the surface of Co3O4, and Ru nanoparticles fall preferentially on cerium oxide with high dispersity. Compared with the Ru/CeO2 and Ru/Co3O4 catalysts, the Ru/Ce@Co catalyst demonstrates excellent catalytic activity and stability for the oxidation of propane, even under severe operating conditions, such as recycling reaction, high space velocity, a certain degree of moisture, and high temperature. Benefiting from this particular structure, the Ru/Ce@Co (5:95) catalyst with more Ce3+ species leads to the Ru species being anchored more firmly on the CeO2 surface with a low-valent state and has a strong potential for adsorption and activation of propane and oxygen, which is beneficial for RuOx species with high activity and stability. This work provides a novel strategy for designing high-efficiency Ru-based catalysts for the catalytic combustion of short carbon alkanes.

9.
Inorg Chem ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958051

RESUMEN

The synthesis of a specific product via the Fischer-Tropsch synthesis remains challenging due to the uncontrollable coupling of CHx on active sites. Isoparaffins, essential high-quality petroleum additives for improving octane numbers, are primarily derived from petroleum or natural gas. With petroleum reserves dwindling and the associated low selectivity, the direct conversion of syngas to isoparaffins has emerged as a promising alternative. This study presents a tandem catalyst comprising CoxMn1-xO and zeolites for catalyzing the direct conversion of syngas to C4-C5 isoparaffins. The relay catalyst exhibited an impressive selectivity of 55.6% toward the desired products while maintaining a low CO2 selectivity of approximately 20%. Notably, the selectivity of isobutane reached 43.5%, exceeding predictions based on the Anderson-Schulz-Flory distribution. Syngas undergoes conversion into olefins on CoxMn1-xO nanocomposites, diffuses into microporous zeolites, and interacts with Brønsted acids to produce isoparaffins. The stability of the relay catalyst relied significantly on the pore characteristics and acidic density of the zeolites.

10.
Alzheimers Dement ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958117

RESUMEN

INTRODUCTION: Despite a two-fold risk, individuals of African ancestry have been underrepresented in Alzheimer's disease (AD) genomics efforts. METHODS: Genome-wide association studies (GWAS) of 2,903 AD cases and 6,265 controls of African ancestry. Within-dataset results were meta-analyzed, followed by functional genomics analyses. RESULTS: A novel AD-risk locus was identified in MPDZ on chromosome (chr) 9p23 (rs141610415, MAF = 0.002, P = 3.68×10-9). Two additional novel common and nine rare loci were identified with suggestive associations (P < 9×10-7). Comparison of association and linkage disequilibrium (LD) patterns between datasets with higher and lower degrees of African ancestry showed differential association patterns at chr12q23.2 (ASCL1), suggesting that this association is modulated by regional origin of local African ancestry. DISCUSSION: These analyses identified novel AD-associated loci in individuals of African ancestry and suggest that degree of African ancestry modulates some associations. Increased sample sets covering as much African genetic diversity as possible will be critical to identify additional loci and deconvolute local genetic ancestry effects. HIGHLIGHTS: Genetic ancestry significantly impacts risk of Alzheimer's Disease (AD). Although individuals of African ancestry are twice as likely to develop AD, they are vastly underrepresented in AD genomics studies. The Alzheimer's Disease Genetics Consortium has previously identified 16 common and rare genetic loci associated with AD in African American individuals. The current analyses significantly expand this effort by increasing the sample size and extending ancestral diversity by including populations from continental Africa. Single variant meta-analysis identified a novel genome-wide significant AD-risk locus in individuals of African ancestry at the MPDZ gene, and 11 additional novel loci with suggestive genome-wide significance at P < 9×10-7. Comparison of African American datasets with samples of higher degree of African ancestry demonstrated differing patterns of association and linkage disequilibrium at one of these loci, suggesting that degree and/or geographic origin of African ancestry modulates the effect at this locus. These findings illustrate the importance of increasing number and ancestral diversity of African ancestry samples in AD genomics studies to fully disentangle the genetic architecture underlying AD, and yield more effective ancestry-informed genetic screening tools and therapeutic interventions.

11.
Adv Sci (Weinh) ; : e2402086, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38946582

RESUMEN

Diabetic neuropathic pain (DNP), one of the most common complications of diabetes, is characterized by bilateral symmetrical distal limb pain and substantial morbidity. To compare the differences  is aimed at serum metabolite levels between 81 DNP and 73 T2DM patients without neuropathy and found that the levels of branched-chain amino acids (BCAA) are significantly lower in DNP patients than in T2DM patients. In high-fat diet/low-dose streptozotocin (HFD/STZ)-induced T2DM and leptin receptor-deficient diabetic (db/db) mouse models, it is verified that BCAA deficiency aggravated, whereas BCAA supplementation alleviated DNP symptoms. Mechanistically, using a combination of RNA sequencing of mouse dorsal root ganglion (DRG) tissues and label-free quantitative proteomic analysis of cultured cells, it is found that BCAA deficiency activated the expression of L-type amino acid transporter 1 (LAT1) through ATF4, which is reversed by BCAA supplementation. Abnormally upregulated LAT1 reduced Kv1.2 localization to the cell membrane, and inhibited Kv1.2 channels, thereby increasing neuronal excitability and causing neuropathy. Furthermore, intraperitoneal injection of the LAT1 inhibitor, BCH, alleviated DNP symptoms in mice, confirming that BCAA-deficiency-induced LAT1 activation contributes to the onset of DNP. These findings provide fresh insights into the metabolic differences between DNP and T2DM, and the development of approaches for the management of DNP.

12.
Opt Lett ; 49(13): 3592-3595, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38950217

RESUMEN

We propose and demonstrate a dual-band microwave photonic radar scheme based on a monolithic integrated mutual injection laser. Based on the photon-photon resonance (PPR) and the gain switching effect of the integrated laser, the C-/X-band triangular chirp signals with high-quality and comparable power at 4.75-5.25 GHz and 9.5-10.5 GHz are generated. In the current proof-of-concept experiment, the range resolution of the dual-band chirp signals can reach 16.9 cm, compared with the single-band chirp signal that cannot distinguish the targets. Through the application of a single integrated device and a transceiver module sharing a set of antennas, the dual-band microwave photonic radar system scheme improves the system integration.

13.
Mar Environ Res ; 199: 106626, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38950495

RESUMEN

Understanding the distribution of halogenated organic compounds (HOCs) in marine sediments is essential for understanding the marine carbon and halogen cycling, and also important for assessing the ecosystem health. In this study, a method based on combustion-ion chromatography was developed for determination of the composition and abundance of HOCs in marine sediments. The method showed high accuracy, precision and reproducibility in determining the content of adsorbable organic halogens (AOX), including fluorine, chlorine and bromine (AOF, AOCl, AOBr) and the corresponding insoluble organic halogens (IOF, IOCl, IOBr, IOX), as well as total organic halogen contents (TOX). Application of the method in coastal and deep-sea sediments revealed high ratios of organic halogens in the organic carbon pool of marine sediments, suggesting that organic halogen compounds represent an important yet previously overlooked stock of carbon and energy in marine sediments. Both the TOX and the proportion of organohalogens in organic carbon (X:C ratio) showed an increasing trend from the coast to the deep-sea sediments, indicating an increased significance of HOCs in deep-sea environments. The developed method and the findings of this study lay the foundation for further studies on biogeochemical cycling of HOCs in the ocean.

14.
Talanta ; 278: 126473, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38950503

RESUMEN

Tumor spheroids are widely studied for in vitro modeling of tumor growth and responses to anticancer drugs. However, current methods are mostly limited to static and perfusion-based cultures, which can be improved by more accurately mimicking pathological conditions. Here, we developed a diffusion-based dynamic culture system for tumor spheroids studies using a thin membrane of hydrogel microwells and a microfluidic device. This allows for effective exchange of nutrients and metabolites between the tumors and the culture medium flowing underneath, resulting in uniform tumor spheroids. To monitor the growth and drug response of the spheroids in real-time, we performed spectroscopic analyses of the system's impedance, demonstrating a close correlation between the tumor size and the resistance and capacitance of the system. Our results also indicate an enhanced drug effect on the tumor spheroids in the presence of a low AC electric field, suggesting a weakening mechanism of the spheroids induced by external perturbation.

15.
J Agric Food Chem ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38950526

RESUMEN

Peanut southern blight, caused by the soil-borne pathogen Sclerotium rolfsii, is a widespread and devastating epidemic. Frequently, it is laborious to effectively control by labor-intensive foliar sprays of agrochemicals due to untimely find. In the present study, seed treatment with physcion (PHY) at doses of 0.08, 0.16, and 0.32 g AI kg-1 seed significantly improved the growth and photosynthetic activity of peanuts. Furthermore, PHY seed treatment resulted in an elevated enzymatic activity of key enzymes in peanut roots, including peroxidase, superoxide dismutase, polyphenol oxidase, catalase, lipoxygenase, and phenylalanine ammonia-lyase, as well as an increase in callus accumulation and lignin synthesis at the infection site, ultimately enhancing the root activity. This study revealed that PHY seed treatment could promote the accumulation of reactive oxygen species, salicylic acid (SA), and jasmonic acid (JA)/ethylene (ET) in peanut roots, while also decreasing the content of malondialdehyde levels in response to S. rolfsii infection. The results were further confirmed by transcriptome data and metabolomics. These findings suggest that PHY seed treatment activates the plant defense pathways mediated by SA and JA/ET in peanut roots, enhancing the resistance of peanut plants to S. rolfsii. In short, PHY is expected to be developed into a new plant-derived immunostimulant or fungicide to increase the options and means for peanut disease control.

16.
Environ Pollut ; 358: 124497, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38964645

RESUMEN

Beryllium-containing sludge (BCS) is a byproduct of the physicochemical treatment of beryllium smelting wastewater. The pollutant element beryllium within BCS is highly unstable and extremely toxic, characterized by its small ionic radius and low charge density, resulting in a high risk of leaching and migration. This study is the first to investigate the leaching behavior, influencing mechanisms, and kinetic processes of beryllium in BCS under various environmental conditions. The results indicate that, under national standard conditions, beryllium exhibits a rapid leaching phase within the first 5 h, which then stabilizes after 10 h, with the total leached content significantly exceeding the leaching toxicity identification standards. Under mildly acidic (pH ≤ 5) or highly alkaline (pH = 14) conditions, beryllium demonstrates pronounced leaching and migration behaviors. Notably, in acidic conditions, the leaching rate exceeds 80% within 5 h. Combining the treatment process of beryllium-containing wastewater with analytical methods such as SEM, XPS, ToF-SIMS, and FTIR, it is revealed that due to the heterogeneous nature of BCS, the particle aggregates dissociate over time under acidic conditions. The particle surfaces become increasingly rough, leading to dissolution and the emergence of more reactive sites, resulting in a high proportion of beryllium leaching. Under these conditions, the gradual reaction of Be(OH)2 in BCS to form soluble Be2+ and its hydrolytic complexes is identified as the primary mechanism for extensive beryllium migration. The process encounters minimal diffusion resistance and is classified as reaction-controlled. In acidic conditions with pH = 4, the leaching rate of beryllium significantly increases with rising temperature. The leaching kinetics equation is [(1-x)-0.44]=e(18.26-53050RT)·t, with an apparent activation energy of 53.05 kJ mol-1.

17.
Front Med (Lausanne) ; 11: 1406149, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962743

RESUMEN

Background: Although previous clinical studies and animal experiments have demonstrated the efficacy of Gegen Qinlian Decoction (GQD) in treating Type 2 Diabetes Mellitus (T2DM) and Ulcerative Colitis (UC), the underlying mechanisms of its therapeutic effects remain elusive. Purpose: This study aims to investigate the shared pathogenic mechanisms between T2DM and UC and elucidate the mechanisms through which GQD modulates these diseases using bioinformatics approaches. Methods: Data for this study were sourced from the Gene Expression Omnibus (GEO) database. Targets of GQD were identified using PharmMapper and SwissTargetPrediction, while targets associated with T2DM and UC were compiled from the DrugBank, GeneCards, Therapeutic Target Database (TTD), DisGeNET databases, and differentially expressed genes (DEGs). Our analysis encompassed six approaches: weighted gene co-expression network analysis (WGCNA), immune infiltration analysis, single-cell sequencing analysis, machine learning, DEG analysis, and network pharmacology. Results: Through GO and KEGG analysis of weighted gene co-expression network analysis (WGCNA) modular genes and DEGs intersection, we found that the co-morbidity between T2DM and UC is primarily associated with immune-inflammatory pathways, including IL-17, TNF, chemokine, and toll-like receptor signaling pathways. Immune infiltration analysis supported these findings. Three distinct machine learning studies identified IGFBP3 as a biomarker for GQD in treating T2DM, while BACE2, EPHB4, and EPHA2 emerged as biomarkers for GQD in UC treatment. Network pharmacology revealed that GQD treatment for T2DM and UC mainly targets immune-inflammatory pathways like Toll-like receptor, IL-17, TNF, MAPK, and PI3K-Akt signaling pathways. Conclusion: This study provides insights into the shared pathogenesis of T2DM and UC and clarifies the regulatory mechanisms of GQD on these conditions. It also proposes novel targets and therapeutic strategies for individuals suffering from T2DM and UC.

18.
Sleep Biol Rhythms ; 22(3): 323-331, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38962791

RESUMEN

Sleep quality significantly affects the quality of life of older persons. Therefore, this study explored the relationship between sleep quality and living environment of older persons in China to provide a theoretical basis for therapies to alleviate sleep disorders in older persons. A total of 6211 subjects > 60 years of age in Anhui Province, China, were evaluated using the Pittsburgh Sleep Quality Index and a self-reported questionnaire. Multivariate logistic regression analysis revealed that living alone (OR = 1.26, 95% CI 1.09-1.46) and living in a rural area (OR = 1.19, 95% CI 1.06-1.34) were significantly associated with a high incidence of sleep disorders in older persons. Living near a park or foot paths suitable for exercise or walking was significantly associated with a lower incidence of sleep disorders in older persons (OR = 0.87, 95% CI 0.77-0.96). Individual factors such as female sex (OR = 1.30, 95% CI 1.14-1.48) and depression (OR = 2.80, 95% CI 2.47-3.19) were also associated with sleep quality in older persons. These data indicate a correlation exists between living environment and sleep quality.

19.
World Neurosurg ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38964462

RESUMEN

OBJECTIVE: Various non-vascularized or vascularized techniques have been adopted in endoscopic endonasal surgery (EES) for repairing intraoperative cerebrospinal fluid (CSF) leaks after tumor resection. Vascularized nasoseptal flaps (VNSF), free nasoseptal grafts (FNSG), free turbinate grafts (FTG), fascia lata and mashed muscle (FLMM) are frequently used. Outcomes of those grafts applied in the defects of different regions need to be clarified. METHODS: The data from a series of 162 patients with skull base tumor who underwent EES that had intraoperative CSF leak between Jan 2012 and Jan 2021 were retrospectively analyzed. The regions included anterior skull base (ASB), sellar region, clivus and infratemporal fossa (ITF). Repair failure rate (RFR), meningitis rate and associated risk factors were assessed. RESULTS: In total, 172 reconstructions were performed in 162 patients for the four sites of the skull base. There were 7 cases (4.3%) that had postoperative CSF leaks, which required second repair. The RFR for ASB, sellar region, clivus, and ITF was 2.6%, 2.2%, 16.7%, and 0%, respectively. The clivus defect was an independent risk factor for repair failure (P<0.01). The postoperative meningitis rate was 5.6%. Repair failure was an independent risk factor for meningitis (P < 0.01). CONCLUSIONS: VNSF, FNSG, FTG, FLMM are reliable autologous materials for repairing the dural defects in different regions during EES. Clivus reconstruction remains a great challenge, which had a higher RFR and meningitis rate. Repair failure is significantly associated with postoperative meningitis.

20.
Sci Total Environ ; 946: 174326, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38950631

RESUMEN

A significant reduction in carbon dioxide (CO2) emissions caused by transportation is essential for attaining sustainable urban development. Carbon concentrations from road traffic in urban areas exhibit complex spatial patterns due to the impact of street configurations, mobile sources, and human activities. However, a comprehensive understanding of these patterns, which involve complex interactions, is still lacking due to the human perspective of road interface characteristics has not been taken into account. In this study, a mobile travel platform was constructed to collect both on-road navigation Street View Panoramas (OSVPs) and the corresponding CO2 concentrations. >100 thousand sample pairs that matched "street view-CO2 concentration" were obtained, covering 675.8 km of roads in Shenzhen, China. In addition, four ensemble learning (EL) models were utilized to establish nonlinear connections between the semantic and object features of streetscapes and CO2 concentrations. After performing EL fusion modeling, the predictive R2 in the test set exceeded 90 %, and the mean absolute error (MAE) was <3.2 ppm. The model was applied to Baidu Street View Panoramas (BSVPs) in Shenzhen to generate a map of average on-road CO2 with a 100 m resolution, and the Local Indicator of Spatial Association (LISA) was then used to identify high CO2 intensity spatial clusters. Additionally, the Light Gradient Boost-SHapley Additive exPlanation (LGB-SHAP) analysis revealed that vertically planted trees can reduce CO2 emissions from on-road sources. Moreover, the factors that affect on-road CO2 exhibit interaction and threshold effects. Street View Panoramas (SVPs) and Artificial Intelligence (AI) were adopted here to enhance the spatial measurement of on-road CO2 concentrations and the understanding of driving factors. Our approach facilitates the assessment and design of low-emission transportation in urban areas, which is critical for promoting sustainable traffic development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...