Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
DNA Repair (Amst) ; 103: 103128, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33991872

RESUMEN

The ubiquitin-proteasome system (UPS) plays crucial roles in regulation of multiple DNA repair pathways, including nucleotide excision repair (NER), which eliminates a broad variety of helix-distorting DNA lesions that can otherwise cause deleterious mutations and genomic instability. In mammalian NER, DNA damage sensors, DDB and XPC acting in global genomic NER (GG-NER), and, CSB and RNAPII acting in transcription-coupled NER (TC-NER) sub-pathways, undergo an array of post-translational ubiquitination at the DNA lesion sites. Accumulating evidence indicates that ubiquitination orchestrates the productive assembly of NER preincision complex by driving well-timed compositional changes in DNA damage-assembled sensor complexes. Conversely, the deubiquitination is also intimately involved in regulating the damage sensing aftermath, via removal of degradative ubiquitin modification on XPC and CSB to prevent their proteolysis for the factor recycling. This review summaries the relevant research efforts and latest findings in our understanding of ubiquitin-mediated regulation of NER and active participation by new regulators of NER, e.g., Cullin-Ring ubiquitin ligases (CRLs), ubiquitin-specific proteases (USPs) and ubiquitin-dependent segregase, valosin-containing protein (VCP)/p97. We project hypothetical step-by-step models in which VCP/p97-mediated timely extraction of damage sensors is integral to overall productive NER. The USPs and proteasome subtly counteract in fine-tuning the vital stability and function of NER damage sensors.


Asunto(s)
Reparación del ADN , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitinación , Animales , ADN/metabolismo , Daño del ADN , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Polimerasa II/metabolismo , Rayos Ultravioleta
3.
Cell Cycle ; 20(1): 81-95, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33381997

RESUMEN

Mineralocorticoid and androgen receptor antagonist, spironolactone, was recently identified as an inhibitor of nucleotide excision repair (NER), acting via induction of proteolysis of TFIIH component Xeroderma Pigmentosum B protein (XPB). This activity provides a strong rationale for repurposing spironolactone for cancer therapy. Here, we report that the spironolactone-induced XPB proteolysis is mediated through ubiquitin-selective segregase, valosin-containing protein (VCP)/p97. We show that spironolactone induces a dose- and time-dependent degradation of XPB but not XPD, and that the XPB degradation is blocked by VCP/p97 inhibitors DBeQ, NMS-873, and neddylation inhibitor MLN4924. Moreover, the cellular treatment by VCP/p97 inhibitors leads to the accumulation of ubiquitin conjugates of XPB but not XPD. VCP/p97 knockdown by inducible shRNA does not affect XPB level but compromises the spironolactone-induced XPB degradation. Also, VCP/p97 interacts with XPB upon treatment of spironolactone and proteasome inhibitor MG132, while the VCP/p97 adaptor UBXD7 binds XPB and its ubiquitin conjugates. Additionally, ATP analog-mediated inhibition of Cdk7 significantly decelerates spironolactone-induced XPB degradation. Likewise, engaging TFIIH to NER by UV irradiation slows down spironolactone-induced XPB degradation. These results indicate that the spironolactone-induced XPB proteolysis requires VCP/p97 function and that XPB within holo-TFIIH rather than core-TFIIH is more vulnerable to spironolactone-induced proteolysis. Abbreviations NER: nucleotide excision repair; TFIIH: transcription factor II H; CAK: Cdk-activating kinase (CAK) complex; XPB: Xeroderma Pigmentosum type B; VCP/p97: valosin-containing protein/p97; Cdk7: cyclin-dependent kinase 7; NAE: NEDD8-activating enzyme; IP: immunoprecipitation.


Asunto(s)
ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Espironolactona/farmacología , Factor de Transcripción TFIIH/metabolismo , Ubiquitina/metabolismo , Proteína que Contiene Valosina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Línea Celular Tumoral , Daño del ADN/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Células HCT116 , Células HEK293 , Humanos , Proteolisis/efectos de los fármacos , ARN Polimerasa II/metabolismo , Transcripción Genética/efectos de los fármacos
4.
Cell Cycle ; 19(1): 124-141, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31775559

RESUMEN

Cockayne syndrome group B (CSB) protein participates in transcription-coupled nucleotide excision repair. The stability of CSB is known to be regulated by ubiquitin-specific protease 7 (USP7). Yet, whether USP7 acts as a deubiquitinating enzyme for CSB is not clear. Here, we demonstrate that USP7 deubiquitinates CSB to maintain its levels after ultraviolet (UV)-induced DNA damage. While both CSB and UV-stimulated scaffold protein A (UVSSA) exhibit a biphasic decrease and recovery upon UV irradiation, only CSB recovery depends on USP7, which physically interacts with and deubiquitinates CSB. Meanwhile, CSB overexpression stabilizes UVSSA, but decrease UVSSA's presence in nuclease-releasable/soluble chromatin, and increase the presence of ubiquitinated UVSSA in insoluble chromatin alongside CSB-ubiquitin conjugates. Remarkably, CSB overexpression also decreases CSB association with USP7 and UVSSA in soluble chromatin. UVSSA exists in several ubiquitinated forms, of which mono-ubiquitinated form and other ubiquitinated UVSSA forms are detectable upon 6xHistidine tag-based purification. The ubiquitinated UVSSA forms, however, are not cleavable by USP7 in vitro. Furthermore, USP7 disruption does not affect RNA synthesis but decreases the recovery of RNA synthesis following UV exposure. These results reveal a role of USP7 as a CSB deubiquitinating enzyme for fine-tuning the process of TC-NER in human cells.


Asunto(s)
Proteínas Portadoras/metabolismo , Daño del ADN , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Peptidasa Específica de Ubiquitina 7/metabolismo , Ubiquitinación , Rayos Ultravioleta , Cromatina/metabolismo , Células HCT116 , Células HeLa , Humanos , Poliubiquitina/metabolismo , Unión Proteica , ARN/biosíntesis , Peptidasa Específica de Ubiquitina 7/deficiencia , Proteína que Contiene Valosina/metabolismo
5.
Cell Death Dis ; 9(5): 561, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29752431

RESUMEN

Cancer stem cells (CSCs), representing the root of many solid tumors including ovarian cancer, have been implicated in disease recurrence, metastasis, and therapeutic resistance. Our previous study has demonstrated that the CSC subpopulation in ovarian cancer can be limited by DNA damage-binding protein 2 (DDB2). Here, we demonstrated that the ovarian CSC subpopulation can be maintained via cancer cell dedifferentiation, and DDB2 is able to suppress this non-CSC-to-CSC conversion by repression of ALDH1A1 transcription. Mechanistically, DDB2 binds to the ALDH1A1 gene promoter, facilitating the enrichment of histone H3K27me3, and competing with the transcription factor C/EBPß for binding to this region, eventually inhibiting the promoter activity of the ALDH1A1 gene. The de-repression of ALDH1A1 expression contributes to DDB2 silencing-augmented non-CSC-to-CSC conversion and expansion of the CSC subpopulation. We further showed that treatment with a selective ALDH1A1 inhibitor blocked DDB2 silencing-induced expansion of CSCs, and halted orthotopic xenograft tumor growth. Together, our data demonstrate that DDB2, functioning as a transcription repressor, can abrogate ovarian CSC properties by downregulating ALDH1A1 expression.


Asunto(s)
Aldehído Deshidrogenasa/biosíntesis , Desdiferenciación Celular , Proteínas de Unión al ADN/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Proteínas de Neoplasias/metabolismo , Células Madre Neoplásicas/metabolismo , Neoplasias Ováricas/metabolismo , Aldehído Deshidrogenasa/genética , Familia de Aldehído Deshidrogenasa 1 , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Femenino , Humanos , Proteínas de Neoplasias/genética , Células Madre Neoplásicas/patología , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Regiones Promotoras Genéticas , Retinal-Deshidrogenasa
6.
Oncotarget ; 9(18): 14481-14491, 2018 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-29581858

RESUMEN

Cancer stem cells (CSCs) represent the root of many solid tumors including ovarian cancer. Eradication of CSCs represents a novel cancer therapeutic strategy. Calcitriol, also known as 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], is an active metabolite of vitamin D, functioning as a potent steroid hormone. Calcitriol has shown anti-tumor effects in various cancers by regulating multiple signaling pathways. It has been reported that calcitriol can regulate the properties of normal and CSCs. However, the effect of calcitriol on the ovarian cancer growth and ovarian CSCs is still unclear. Here, by using a mouse subcutaneous xenograft model generated with human ovarian cancer cells, we have demonstrated that administration of calcitriol is able to strikingly delay the tumor growth. Calcitriol treatment can also deplete the ovarian CSC population characterized by ALDH+ and CD44+CD117+; decrease their capacity to form sphere under the CSC culture condition, and reduce the frequency of tumor-initiating cells, as evaluated by in vivo limiting dilution analysis. Mechanistic investigation revealed that calcitriol depletes CSCs via the nuclear vitamin D receptor (VDR)-mediated inhibition of the Wnt pathway. Furthermore, the activation of VDR pathway is more sensitive to calcitriol in ovarian CSCs than in non-CSCs, although the expression levels of VDR are comparable. Taken together, our data indicate that calcitriol is able to deplete the ovarian CSC population by inhibiting their Wnt signaling pathway, consequently, impeding the growth of xenograft tumors.

7.
Oncotarget ; 8(61): 104525-104542, 2017 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-29262658

RESUMEN

Acetylated histone H3 lysine 56 (H3K56Ac) diminishes in response to DNA damage but is restored following DNA repair. Here, we report that CRL4DDB2 ubiquitin ligase preferentially regulates post-repair chromatin restoration of H3K56Ac through recruitment of histone chaperon CAF-1. We show that H3K56Ac accumulates at DNA damage sites. The restoration of H3K56Ac but not H3K27Ac, H3K18Ac and H3K14Ac depends on CAF-1 function, whereas all these acetylations are mediated by CBP/p300. The CRL4DDB2 components, DDB1, DDB2 and CUL4A, are also required for maintaining the H3K56Ac and H3K9Ac level in chromatin, and for restoring H3K56Ac following induction of DNA photolesions and strand breaks. Depletion of CUL4A decreases the recruitment of CAF-1 p60 and p150 to ultraviolet radiation- and phleomycin-induced DNA damage. Neddylation inhibition renders CRL4DDB2 inactive, decreases H3K56Ac level, diminishes CAF-1 recruitment and prevents H3K56Ac restoration. Mutation in the PIP box of DDB2 compromises its capability to elevate the H3K56Ac level but does not affect XPC ubiquitination. These results demonstrated a function of CRL4DDB2 in differential regulation of histone acetylation in response to DNA damage, suggesting a novel role of CRL4DDB2 in repair-driven chromatin assembly.

8.
Carcinogenesis ; 38(10): 976-985, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28981631

RESUMEN

Subunit 2 of DNA damage-binding protein complex (DDB2) is an early sensor of nucleotide excision repair (NER) pathway for eliminating DNA damage induced by UV radiation (UVR) and cisplatin treatments of mammalian cells. DDB2 is modified by ubiquitin and poly(ADP-ribose) (PAR) in response to UVR, and these modifications play a crucial role in regulating NER. Here, using immuno-analysis of irradiated cell extracts, we have identified multiple post-irradiation modifications of DDB2 protein. Interestingly, although the DNA lesions induced by both UVR and cisplatin are corrected by NER, only the UV irradiation, but not the cisplatin treatment, induces any discernable DDB2 modifications. We, for the first time, show that the appearance of UVR-induced DDB2 modifications depend on the binding of DDB2 to the damaged chromatin and the participation of functionally active 26S proteasome. The in vitro and in vivo analysis revealed that SUMO-1 conjugations comprise a significant portion of these UVR-induced DDB2 modifications. Mapping of SUMO-modified sites demonstrated that UVR-induced SUMOylation occurs on Lys-309 residue of DDB2 protein. Mutation of Lys-309 to Arg-309 diminished the DDB2 SUMOylation observable both in vitro and in vivo. Moreover, K309R mutated DDB2 lost its function of recruiting XPC to the DNA damage sites, as well as the ability to repair cyclobutane pyrimidine dimers following cellular UV irradiation. Taken together, our results indicate that DDB2 is modified by SUMOylation upon UV irradiation, and this post-translational modification plays an important role in the initial recognition and processing of UVR-induced DNA damage occurring within the context of chromatin.


Asunto(s)
Reparación del ADN/efectos de la radiación , Proteínas de Unión al ADN/metabolismo , Sumoilación/efectos de la radiación , Cromatina/metabolismo , Cromatina/efectos de la radiación , Cisplatino/farmacología , Reparación del ADN/efectos de los fármacos , Reparación del ADN/fisiología , Proteínas de Unión al ADN/genética , Células HeLa , Humanos , Lisina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Dímeros de Pirimidina/genética , Dímeros de Pirimidina/metabolismo , Sumoilación/efectos de los fármacos , Rayos Ultravioleta
9.
Toxicol In Vitro ; 40: 336-346, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28137434

RESUMEN

Oxidative DNA damage has been implicated in the pathogenesis of neurological disorders, cancer and ageing. Owing to the established link between labile copper concentrations and neurological diseases, it is critical to explore the interactions of neurotransmitters and drug supplements with copper. Herein, we investigate the pro-oxidant DNA damage induced by the interaction of L-DOPA and dopamine (DA) with copper. The DNA binding affinity order of the compounds has been determined by in silico molecular docking. Agarose gel electrophoresis reveals that L-DOPA and DA are able to induce strand scission in plasmid pcDNA3.1 (+/-) in a copper dependent reaction. These metabolites also cause cellular DNA breakage in human lymphocytes by mobilizing endogenous copper, as assessed by comet assay. Further, L-DOPA and DA-mediated DNA breaks were detected by the appearance of post-DNA damage sensitive marker γH2AX in cancer cell lines accumulating high copper. Immunofluorescence demonstrated the co-localization of downstream repair factor 53BP1 at the damaged induced γH2AX foci in cancer cells. The present study corroborates and provides a mechanism to the hypothesis that suggests metal-mediated oxidation of catecholamines contributes to the pathogenesis of neurodegenerative diseases.


Asunto(s)
Cobre/farmacología , Daño del ADN , Dopaminérgicos/farmacología , Dopamina/farmacología , Levodopa/farmacología , Especies Reactivas de Oxígeno/farmacología , Línea Celular , Línea Celular Tumoral , Quelantes/farmacología , Cobre/química , Dopamina/química , Dopaminérgicos/química , Humanos , Levodopa/química , Linfocitos/efectos de los fármacos , Linfocitos/metabolismo , Oxidación-Reducción , Fenantrolinas/farmacología , Especies Reactivas de Oxígeno/química
10.
Photochem Photobiol ; 93(1): 166-177, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27696486

RESUMEN

Nucleotide excision repair (NER) eliminates a broad variety of helix-distorting DNA lesions that can otherwise cause genomic instability. NER comprises two distinct subpathways: global genomic NER (GG-NER) operating throughout the genome, and transcription-coupled NER (TC-NER) preferentially removing DNA lesions from transcribing DNA strands of transcriptionally active genes. Several NER factors undergo post-translational modifications, including ubiquitination, occurring swiftly and reversibly at DNA lesion sites. Accumulating evidence indicates that ubiquitination not only orchestrates the spatio-temporal recruitment of key protein factors to DNA lesion sites but also the productive assembly of NER pre-incision complex. This review will be restricted to the latest conceptual understanding of ubiquitin-mediated regulation of initial damage sensors of NER, that is DDB, XPC, RNAPII and CSB. We project hypothetical NER models in which ubiquitin-specific segregase, valosin-containing protein (VCP)/p97, plays an essential role in timely extraction of the congregated DNA damage sensors to functionally facilitate the DNA lesion elimination from the genome.


Asunto(s)
Daño del ADN , Reparación del ADN , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Inestabilidad Genómica , Humanos , Modelos Teóricos , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Procesamiento Proteico-Postraduccional , ARN Polimerasa II/metabolismo , Transcripción Genética , Ubiquitina/metabolismo , Ubiquitinación , Proteína que Contiene Valosina/metabolismo
11.
Oncotarget ; 8(7): 11004-11019, 2017 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-28036256

RESUMEN

RNA polymerase II (RNAPII) acts as a damage sensor for transcription-coupled nucleotide excision repair (TC-NER) and undergoes proteolytic clearance from damaged chromatin by the ubiquitin-proteasome system (UPS). Here, we report that Valosin-containing protein (VCP)/p97, a druggable oncotarget, is essential for RNAPII's proteolytic clearance in mammalian cells. We show that inhibition of VCP/p97, or siRNA-mediated ablation of VCP/p97 and its cofactors UFD1 and UBXD7 severely impairs ultraviolet radiation (UVR)-induced RNAPII degradation. VCP/p97 interacts with RNAPII, and the interaction is enhanced by Cockayne syndrome B protein (CSB). However, the VCP/p97-mediated RNAPII proteolysis occurs independent of CSB. Surprisingly, CSB enhances UVR-induced RNAPII ubiquitination but delays its turnover. Additionally, VCP/p97-mediated RNAPII turnover occurs with and without Von Hippel-Lindau tumor suppressor protein (pVHL), a known substrate receptor of Elongin E3 ubiquitin ligase for RNAPII. Moreover, pVHL re-expression improves cell viability following UVR. Whereas, VCP/p97 inhibition decreases cell viability and enhances a low-dose UVR killing in presence of pVHL. These findings reveal a function of VCP/p97 segregase in UVR-induced RNAPII degradation in mammalian cells, and suggest a role of CSB in coordinating VCP/p97-mediated extraction of ubiquitinated RNAPII and CSB itself from chromatin.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , ARN Polimerasa II/metabolismo , Rayos Ultravioleta , Proteínas Adaptadoras Transductoras de Señales , Proteínas Adaptadoras del Transporte Vesicular , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfatasas/genética , Western Blotting , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Supervivencia Celular/efectos de la radiación , Células HCT116 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular , Proteínas de Unión a Poli-ADP-Ribosa , Proteínas/genética , Proteínas/metabolismo , Proteolisis/efectos de la radiación , Quinazolinas/farmacología , Interferencia de ARN , Factores de Tiempo , Ubiquitinación/efectos de la radiación , Proteína que Contiene Valosina , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo
12.
PLoS One ; 11(7): e0159344, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27442013

RESUMEN

Cell cycle checkpoint is mediated by ATR and ATM kinases, as a prompt early response to a variety of DNA insults, and culminates in a highly orchestrated signal transduction cascade. Previously, we defined the regulatory role of nucleotide excision repair (NER) factors, DDB2 and XPC, in checkpoint and ATR/ATM-dependent repair pathway via ATR and ATM phosphorylation and recruitment to ultraviolet radiation (UVR)-induced damage sites. Here, we have dissected the molecular mechanisms of DDB2- and XPC- mediated regulation of ATR and ATM recruitment and activation upon UVR exposures. We show that the ATR and ATM activation and accumulation to UVR-induced damage not only depends on DDB2 and XPC, but also on the NER protein XPA, suggesting that the assembly of an active NER complex is essential for ATR and ATM recruitment. ATR and ATM localization and H2AX phosphorylation at the lesion sites occur as early as ten minutes in asynchronous as well as G1 arrested cells, showing that repair and checkpoint-mediated by ATR and ATM starts early upon UV irradiation. Moreover, our results demonstrated that ATR and ATM recruitment and H2AX phosphorylation are dependent on NER proteins in G1 phase, but not in S phase. We reasoned that in G1 the UVR-induced ssDNA gaps or processed ssDNA, and the bound NER complex promote ATR and ATM recruitment. In S phase, when the UV lesions result in stalled replication forks with long single-stranded DNA, ATR and ATM recruitment to these sites is regulated by different sets of proteins. Taken together, these results provide evidence that UVR-induced ATR and ATM recruitment and activation differ in G1 and S phases due to the existence of distinct types of DNA lesions, which promote assembly of different proteins involved in the process of DNA repair and checkpoint activation.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Daño del ADN , Reparación del ADN , Fase G1 , Fase S , Puntos de Control del Ciclo Celular/efectos de la radiación , Línea Celular , Reparación del ADN/efectos de la radiación , Proteínas de Unión al ADN/metabolismo , Fase G1/efectos de la radiación , Histonas/metabolismo , Humanos , Modelos Biológicos , Fosforilación/efectos de la radiación , Fase S/efectos de la radiación , Especificidad por Sustrato/efectos de la radiación , Rayos Ultravioleta , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo
13.
Carcinogenesis ; 37(2): 129-38, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26717995

RESUMEN

Discretely orchestrated chromatin condensation is important for chromosome protection from DNA damage. However, it is still unclear how different chromatin states affect the formation and repair of nucleotide excision repair (NER) substrates, e.g. ultraviolet (UV)-induced cyclobutane pyrimidine dimers (CPD) and the pyrimidine (6-4) pyrimidone photoproducts (6-4PP), as well as cisplatin-induced intrastrand crosslinks (Pt-GG). Here, by using immunofluorescence and chromatin immunoprecipitation assays, we have demonstrated that CPD, which cause minor distortion of DNA double helix, can be detected in both euchromatic and heterochromatic regions, while 6-4PP and Pt-GG, which cause major distortion of DNA helix, can exclusively be detected in euchromatin, indicating that the condensed chromatin environment specifically interferes with the formation of these DNA lesions. Mechanistic investigation revealed that the class III histone deacetylase SIRT1 is responsible for restricting the formation of 6-4PP and Pt-GG in cells, probably by facilitating the maintenance of highly condensed heterochromatin. In addition, we also showed that the repair of CPD in heterochromatin is slower than that in euchromatin, and DNA damage binding protein 2 (DDB2) can promote the removal of CPD from heterochromatic region. In summary, our data provide evidence for differential formation and repair of DNA lesions that are substrates of NER. Both the sensitivity of DNA to damage and the kinetics of repair can be affected by the underlying level of chromatin compaction.


Asunto(s)
Daño del ADN/fisiología , Reparación del ADN/fisiología , Eucromatina/química , Heterocromatina/química , Células Cultivadas , Inmunoprecipitación de Cromatina , Técnica del Anticuerpo Fluorescente , Humanos , Immunoblotting , Dímeros de Pirimidina/metabolismo , Interferencia de ARN
14.
J Biol Chem ; 291(14): 7396-408, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26826127

RESUMEN

Cockayne syndrome group A and B (CSB) proteins act in transcription-coupled repair, a subpathway of nucleotide excision repair. Here we demonstrate that valosin-containing protein (VCP)/p97 segregase functions in ultraviolet radiation (UVR)-induced ubiquitin-mediated CSB degradation. We show that VCP/p97 inhibition and siRNA-mediated ablation of VCP/p97 and its cofactors UFD1 and UBXD7 impair CSB degradation. VCP/p97 inhibition also results in the accumulation of CSB in chromatin. Moreover, VCP/p97 interacts with both native and ubiquitin-conjugated forms of CSB. The localized cellular UVR exposures lead to VCP/p97 accumulation at DNA damage spots, forming distinct UVR-induced foci. However, manifestation of VCP/p97 foci is independent of CSB and UBXD7. Furthermore, VCP/p97 and UBXD7 associate with the Cockayne syndrome group A-DDB1-Cul4A complex, an E3 ligase responsible for CSB ubiquitination. Compromising proteasome and VCP/p97 function allows accumulation of both native and ubiquitinated CSB and results in an increase of UBXD7, proteasomal RPN2, and Sug1 in the chromatin compartment. Surprisingly, both biochemical inhibition and genetic defect of VCP/p97 enhance the recovery of RNA synthesis following UVR, whereas both VCP/p97 and proteasome inhibitions decrease cell viability. Our findings reveal a new role of VCP/p97 segregase in the timely processing of ubiquitinated CSB from damaged chromatin.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Daño del ADN , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Proteolisis , Rayos Ultravioleta/efectos adversos , ATPasas Asociadas con Actividades Celulares Diversas , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras del Transporte Vesicular , Adenosina Trifosfatasas/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular , Cromatina/genética , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , ADN Helicasas/genética , Enzimas Reparadoras del ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Hexosiltransferasas/genética , Hexosiltransferasas/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas/genética , Proteínas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ubiquitinación/genética , Ubiquitinación/efectos de la radiación , Proteína que Contiene Valosina
15.
Mutat Res ; 776: 16-23, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26255936

RESUMEN

Acetylated histone H3 lysine 56 (H3K56Ac) is one of the reversible histone post-translational modifications (PTMs) responsive to DNA damage. We previously described a biphasic decrease and increase of epigenetic mark H3K56Ac in response to ultraviolet radiation (UVR)-induced DNA damage. Here, we report a new function of UV damaged DNA-binding protein (DDB) in deacetylation of H3K56Ac through specific histone deacetylases (HDACs). We show that simultaneous depletion of HDAC1/2 compromises the deacetylation of H3K56Ac, while depletion of HDAC1 or HDAC2 alone has no effect on H3K56Ac. The H3K56Ac deacetylation does not require functional nucleotide excision repair (NER) factors XPA and XPC, but depends on the function of upstream factors DDB1 and DDB2. UVR enhances the association of DDB2 with HDAC1 and, enforced DDB2 expression leads to translocation of HDAC1 to UVR-damaged chromatin. HDAC1 and HDAC2 are recruited to UVR-induced DNA damage spots, which are visualized by anti-XPC immunofluorescence. Dual HDAC1/2 depletion decreases XPC ubiquitination, but does not affect the recruitment of DDB2 to DNA damage. By contrast, the local accumulation of γH2AX at UVR-induced DNA damage spots was compromised upon HDAC1 as well as dual HDAC1/2 depletions. Additionally, UVR-induced ATM activation decreased in H12899 cells expressing H3K56Ac-mimicing H3K56Q. These results revealed a novel role of DDB in H3K56Ac deacetylation during early step of NER and the existence of active functional cross-talk between DDB-mediated damage recognition and H3K56Ac deacetylation.


Asunto(s)
Daño del ADN , Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo , Epigénesis Genética , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/metabolismo , Histonas/metabolismo , Acetilación/efectos de la radiación , Sustitución de Aminoácidos , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Línea Celular Tumoral , Reparación del ADN/genética , Reparación del ADN/efectos de la radiación , Proteínas de Unión al ADN/genética , Histona Desacetilasa 1/genética , Histona Desacetilasa 2/genética , Histonas/genética , Humanos , Mutación Missense , Procesamiento Proteico-Postraduccional/genética , Procesamiento Proteico-Postraduccional/efectos de la radiación , Ubiquitinación/genética , Ubiquitinación/efectos de la radiación , Rayos Ultravioleta
16.
Nucleic Acids Res ; 43(16): 7838-49, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26130719

RESUMEN

The expression of DNA damage-binding protein 2 (DDB2) has been linked to the prognosis of ovarian cancer and its underlying transcription regulatory function was proposed to contribute to the favorable treatment outcome. By applying gene microarray analysis, we discovered neural precursor cell expressed, developmentally downregulated 4-Like (NEDD4L) as a previously unidentified downstream gene regulated by DDB2. Mechanistic investigation demonstrated that DDB2 can bind to the promoter region of NEDD4L and recruit enhancer of zeste homolog 2 histone methyltransferase to repress NEDD4L transcription by enhancing histone H3 lysine 27 trimethylation (H3K27me3) at the NEDD4L promoter. Given that NEDD4L plays an important role in constraining transforming growth factor ß signaling by targeting activated Smad2/Smad3 for degradation, we investigated the role of DDB2 in the regulation of TGF-ß signaling in ovarian cancer cells. Our data indicate that DDB2 enhances TGF-ß signal transduction and increases the responsiveness of ovarian cancer cells to TGF-ß-induced growth inhibition. The study has uncovered an unappreciated regulatory mode that hinges on the interaction between DDB2 and NEDD4L in human ovarian cancer cells. The novel mechanism proposes the DDB2-mediated fine-tuning of TGF-ß signaling and its downstream effects that impinge upon tumor growth in ovarian cancers.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Ováricas/genética , Factor de Crecimiento Transformador beta/farmacología , Ubiquitina-Proteína Ligasas/genética , Línea Celular Tumoral , Proliferación Celular , Regulación hacia Abajo , Proteína Potenciadora del Homólogo Zeste 2 , Femenino , Histonas/metabolismo , Humanos , Ubiquitina-Proteína Ligasas Nedd4 , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Complejo Represivo Polycomb 2/metabolismo , Regiones Promotoras Genéticas , Transducción de Señal
17.
Cell Cycle ; 14(9): 1413-25, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25894431

RESUMEN

During DNA damage response (DDR), histone ubiquitination by RNF168 is a critical event, which orchestrates the recruitment of downstream DDR factors, e.g. BRCA1 and 53BP1. Here, we report USP7 deubiquitinase regulates the stability of RNF168. We showed that USP7 disruption impairs H2A and ultraviolet radiation (UVR)-induced γH2AX monoubiquitination, and decreases the levels of pBmi1, Bmi1, RNF168 and BRCA1. The effect of USP7 disruption was recapitulated by siRNA-mediated USP7 depletion. The USP7 disruption also compromises the formation of UVR-induced foci (UVRIF) and ionizing radiation-induced foci (IRIF) of monoubiquitinated H2A (uH2A) and polyubiquitinated H2AX/A, and subsequently affects UVRIF and IRIF of BRCA1 as well as the IRIF of 53BP1. USP7 was shown to physically bind RNF168 in vitro and in vivo. Overexpression of wild-type USP7, but not its interaction-defective mutant, prevents UVR-induced RNF168 degradation. The USP7 mutant is unable to cleave Ub-conjugates of RNF168 in vivo. Importantly, ectopic expression of RNF168, or both RNF8 and RNF168 together in USP7-disrupted cells, significantly rescue the formation of UVRIF and IRIF of polyubiquitinated H2A and BRCA1. Taken together, these findings reveal an important role of USP7 in regulating ubiquitin-dependent signaling via stabilization of RNF168.


Asunto(s)
Núcleo Celular/enzimología , Daño del ADN , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Núcleo Celular/efectos de la radiación , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Estabilidad de Enzimas , Regulación de la Expresión Génica , Células HCT116 , Células HeLa , Histonas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Unión Proteica , Proteolisis , Interferencia de ARN , Factores de Tiempo , Transfección , Proteína 1 de Unión al Supresor Tumoral P53 , Ubiquitina Tiolesterasa/genética , Ubiquitina-Proteína Ligasas/genética , Peptidasa Específica de Ubiquitina 7 , Ubiquitinación , Rayos Ultravioleta
18.
Cell Cycle ; 14(7): 1103-15, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25483071

RESUMEN

Xeroderma pigmentosum group G (XPG) protein is a structure-specific repair endonuclease, which cleaves DNA strands on the 3' side of the DNA damage during nucleotide excision repair (NER). XPG also plays a crucial role in initiating DNA repair synthesis through recruitment of PCNA to the repair sites. However, the fate of XPG protein subsequent to the excision of DNA damage has remained unresolved. Here, we show that XPG, following its action on bulky lesions resulting from exposures to UV irradiation and cisplatin, is subjected to proteasome-mediated proteolytic degradation. Productive NER processing is required for XPG degradation as both UV and cisplatin treatment-induced XPG degradation is compromised in NER-deficient XP-A, XP-B, XP-C, and XP-F cells. In addition, the NER-related XPG degradation requires Cdt2, a component of an E3 ubiquitin ligase, CRL4(Cdt2). Micropore local UV irradiation and in situ Proximity Ligation assays demonstrated that Cdt2 is recruited to the UV-damage sites and interacts with XPG in the presence of PCNA. Importantly, Cdt2-mediated XPG degradation is crucial to the subsequent recruitment of DNA polymerase δ and DNA repair synthesis. Collectively, our data support the idea of PCNA recruitment to damage sites which occurs in conjunction with XPG, recognition of the PCNA-bound XPG by CRL4(Cdt2) for specific ubiquitylation and finally the protein degradation. In essence, XPG elimination from DNA damage sites clears the chromatin space needed for the subsequent recruitment of DNA polymerase δ to the damage site and completion of gap-filling DNA synthesis during the final stage of NER.


Asunto(s)
Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiología , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/fisiología , Cisplatino/farmacología , Daño del ADN , ADN Polimerasa III/metabolismo , Células HeLa , Humanos , Leupeptinas/farmacología , Antígeno Nuclear de Célula en Proliferación/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Proteolisis , Ubiquitinación
19.
J Biol Chem ; 289(39): 27278-27289, 2014 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-25118285

RESUMEN

Ubiquitin specific protease 7 (USP7) is a known deubiquitinating enzyme for tumor suppressor p53 and its downstream regulator, E3 ubiquitin ligase Mdm2. Here we report that USP7 regulates nucleotide excision repair (NER) via deubiquitinating xeroderma pigmentosum complementation group C (XPC) protein, a critical damage recognition factor that binds to helix-distorting DNA lesions and initiates NER. XPC is ubiquitinated during the early stage of NER of UV light-induced DNA lesions. We demonstrate that transiently compromising cellular USP7 by siRNA and chemical inhibition leads to accumulation of ubiquitinated forms of XPC, whereas complete USP7 deficiency leads to rapid ubiquitin-mediated XPC degradation upon UV irradiation. We show that USP7 physically interacts with XPC in vitro and in vivo. Overexpression of wild-type USP7, but not its catalytically inactive or interaction-defective mutants, reduces the ubiquitinated forms of XPC. Importantly, USP7 efficiently deubiquitinates XPC-ubiquitin conjugates in deubiquitination assays in vitro. We further show that valosin-containing protein (VCP)/p97 is involved in UV light-induced XPC degradation in USP7-deficient cells. VCP/p97 is readily recruited to DNA damage sites and colocalizes with XPC. Chemical inhibition of the activity of VCP/p97 ATPase causes an increase in ubiquitinated XPC on DNA-damaged chromatin. Moreover, USP7 deficiency severely impairs the repair of cyclobutane pyrimidine dimers and, to a lesser extent, affects the repair of 6-4 photoproducts. Taken together, our findings uncovered an important role of USP7 in regulating NER via deubiquitinating XPC and by preventing its VCP/p97-regulated proteolysis.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Reparación del ADN/efectos de la radiación , Proteínas de Unión al ADN/metabolismo , Proteolisis/efectos de la radiación , Ubiquitina Tiolesterasa/metabolismo , Ubiquitinación/efectos de la radiación , Rayos Ultravioleta , Adenosina Trifosfatasas/genética , Proteínas de Ciclo Celular/genética , Daño del ADN , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Células HeLa , Humanos , Mutación , Dímeros de Pirimidina/genética , Dímeros de Pirimidina/metabolismo , Ubiquitina Tiolesterasa/genética , Peptidasa Específica de Ubiquitina 7 , Ubiquitinación/genética , Proteína que Contiene Valosina
20.
Cell Cycle ; 13(1): 106-14, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24196443

RESUMEN

Histone ubiquitination plays a vital role in DNA damage response (DDR), which is important for maintaining genomic integrity in eukaryotic cells. In DDR, ubiquitination of histone H2A and γH2AX by the concerted action of ubiquitin (Ub) ligases, RNF168 and RNF8, generates a cascade of ubiquitination signaling. However, little is known about deubiquitinating enzymes (DUBs) that may catalyze the removal of Ub from these histones. This study demonstrated that USP3, an apparent DUB for mono-ubiquitinated H2A, is indeed the enzyme for deubiquitinating Ub conjugates of γH2AX and H2A from lysine sites, where the ubiquitination is initiated by RNF168. Here, we showed that ectopic expression of USP3 led to the deubiquitination of both H2A and γH2AX in response to UV-induced DNA damage. Moreover, ectopic USP3 expression abrogated FK2 antibody-reactive Ub-conjugate foci, which co-localize with damage-induced γH2AX foci. In addition, USP3 overexpression impaired the accumulation of downstream repair factors BRCA1 and 53BP1 at the damage sites in response to both UV and γ-irradiation. We further identified that the USP3 removes Ub at lysine 13 and 15 of H2A and γH2AX, as well as lysine 118 and 119 of H2AX in response to DNA damage. Taken together, the results suggested that USP3 is a negative regulator of ubiquitination signaling, counteracting RNF168- and RNF8-mediated ubiquitination.


Asunto(s)
Histonas/genética , Lisina/genética , Ubiquitina-Proteína Ligasas/genética , Proteasas Ubiquitina-Específicas/metabolismo , Línea Celular , Daño del ADN/genética , Reparación del ADN/genética , Histonas/metabolismo , Humanos , Procesamiento Proteico-Postraduccional , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo , Proteasas Ubiquitina-Específicas/genética , Ubiquitinación/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA