Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 14(29): 21190-21202, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38966810

RESUMEN

Candida auris, a recent addition to the Candida species, poses a significant threat with its association to numerous hospital outbreaks globally, particularly affecting immunocompromised individuals. Given its resistance to existing antifungal therapies, there is a pressing need for innovative treatments. In this study, novel triazole bridged quinoline derivatives were synthesized and evaluated for their antifungal activity against C. auris. The most promising compound, QT7, demonstrated exceptional efficacy with a minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of 0.12 µg mL-1 and 0.24 µg mL-1, respectively. Additionally, QT7 effectively disrupted mature biofilms, inhibiting them by 81.98% ± 8.51 and 89.57 ± 5.47 at MFC and 2× MFC values, respectively. Furthermore, QT7 induced cellular apoptosis in a dose-dependent manner, supported by various apoptotic markers such as phosphatidylserine externalization, mitochondrial depolarization, and reduced cytochrome c and oxidase activity. Importantly, QT7 exhibited low hemolytic activity, highlighting its potential for further investigation. Additionally, the physicochemical properties of this compound suggest its potential as a lead drug candidate, warranting further exploration in drug discovery efforts against Candida auris infections.

2.
Dalton Trans ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38932585

RESUMEN

Heteroleptic metal complexes containing CuII, CoII, and ZnII, incorporating curcumin and a Schiff base ligand (L), were synthesized and characterized, and their antifungal activity was evaluated. Their antifungal activities were investigated individually and in combination with fluconazole. Utilizing various analytical techniques such as UV-Vis, FT-IR, NMR, ESI-MS, TGA-DTG, elemental analyses, conductance, and magnetic susceptibility measurements, complex C1 ([Cu(Cur)LCl(H2O)]) was assigned a distorted octahedral geometry, while complexes C2 ([Co(Cur)LCl(H2O)]) and C3 ([Zn(Cur)LCl(H2O)]) were assigned octahedral geometries. Among these complexes, C2 exhibited the highest inhibitory activity against both FLC-susceptible and resistant strains of Candida albicans. Furthermore, C2 demonstrated candidicidal activity and synergistic interactions with fluconazole, effectively inhibiting the growth and survival of both FLC-resistant and FLC-sensitive C. albicans strains. The complex displayed a dose-dependent inhibition of drug efflux pumps in FLC-resistant C. albicans strains, indicating its potential to disrupt the cell membrane of these strains. The significant role of membrane efflux transporters in the development of antifungal drug resistance within Candida species has been extensively documented and our findings indicate that complex C2 specifically targets this crucial factor, thereby playing a pivotal role in mitigating drug resistance in C. albicans.

3.
RSC Med Chem ; 15(6): 1942-1958, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38911173

RESUMEN

A series of novel phenothiazine-containing imidazo[1,2-a]pyridine derivatives were designed and synthesized under metal-free conditions in excellent yield. These derivatives were effectively transformed further into N-alkyl, sulfoxide, and sulfone derivatives. Derivatives were deployed against human microtubule affinity regulating kinase (MARK4), some molecules play crucial roles in cell-cycle progression such as G1/S transition and regulator of microtubule dynamics. Hence, molecules have shown excellent MARK4 inhibitory potential. Molecules with excellent IC50 values were selected for further studies such as ligand interactions using fluorescence quenching experiments for the binding constant. The highest binding constant was calculated as K = 0.79 × 105 and K = 0.1 × 107 for compounds 6a and 6h, respectively. Molecular docking, cell cytotoxicity, mitochondrial reactive oxygen species measurement and oxidative DNA damage were also studied to understand the mechanism of action of the molecules on cancer cells. It was found that the designed and synthesized compounds played anti-cancer roles by binding and inhibiting MARK4 protein.

4.
Int J Biol Macromol ; 271(Pt 1): 132719, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38821810

RESUMEN

Natural products have a long history of success in treating bacterial infections, making them a promising source for novel antibacterial medications. Curcumin, an essential component of turmeric, has shown potential in treating bacterial infections and in this study, we covalently immobilized curcumin (Cur) onto chitosan (CS) using glutaraldehyde and tannic acid (TA), resulting in the fabrication of novel biocomposites with varying CS/Cur/TA ratios. Comprehensive characterization of these ternary biocomposites was conducted using FTIR, SEM, XPS, and XRD to assess their morphology, functional groups, and chemical structures. The inhibitory efficacy of these novel biocomposites (n = 4) against the growth and viability of Pseudomonas aeruginosa (ATCC27853) and Chromobacterium violaceum (ATCC12472) was evaluated and the most promising composite (C3) was investigated for its impact on quorum sensing (QS) and biofilm formation in these bacteria. Remarkably, this biocomposite significantly disrupted QS circuits and effectively curtailed biofilm formation in the tested pathogens without inducing appreciable toxicity. These findings underscore its potential for future in vivo studies, positioning it as a promising candidate for the development of biofilm disrupting antibacterial agents.


Asunto(s)
Antibacterianos , Biopelículas , Quitosano , Curcumina , Pseudomonas aeruginosa , Percepción de Quorum , Taninos , Quitosano/química , Quitosano/farmacología , Percepción de Quorum/efectos de los fármacos , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Curcumina/farmacología , Curcumina/química , Taninos/química , Taninos/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Chromobacterium/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Polifenoles
5.
Heliyon ; 10(9): e29967, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38694063

RESUMEN

The COVID-19 pandemic has become a significant global issue in terms of public health. While it is largely associated with respiratory complications, recent reports indicate that patients also experience neurological symptoms and other health issues. The objective of this study is to examine the network of protein-protein interactions (PPI) between SARS-CoV-2 proteins and human host proteins, pinpoint the central genes within this network implicated in disease pathology, and assess their viability as targets for drug development. The study adopts a network-based approach to construct a network of 29 SARS-CoV-2 proteins interacting with 2896 host proteins, with 176 host genes being identified as interacting genes with all the viral proteins. Gene ontology and pathway analysis of these host proteins revealed their role in biological processes such as translation, mRNA splicing, and ribosomal pathways. We further identified EEF2, RPS3, RPL9, RPS16, and RPL11 as the top 5 most connected hub genes in the disease-causing network, with significant interactions among each other. These hub genes were found to be involved in ribosomal pathways and cytoplasmic translation. Further a disease-gene interaction was also prepared to investigate the role of hub genes in other disorders and to understand the condition of comorbidity in COVID-19 patients. We also identified 13 drug molecules having interactions with all the hub genes, and estradiol emerged as the top potential drug target for the COVID-19 patients. Our study provides valuable insights using the protein-protein interaction network of SARS-CoV-2 proteins with host proteins and highlights the molecular basis of manifestation of COVID-19 and proposes drug for repurposing. As the pandemic continues to evolve, it is anticipated that investigating SARS-CoV-2 proteins will remain a critical area of focus for researchers globally, particularly in addressing potential challenges posed by specific SARS-CoV-2 variants in the future.

6.
J Mater Chem B ; 12(11): 2691-2710, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38419476

RESUMEN

Over the past two decades, metal-organic frameworks (MOFs) have garnered substantial scientific interest across diverse fields, spanning gas storage, catalysis, biotechnology, and more. Zirconium, abundant in nature and biologically relevant, offers an appealing combination of high content and low toxicity. Consequently, Zr-based MOFs have emerged as promising materials with significant potential in biomedical applications. These MOFs serve as effective nanocarriers for controlled drug delivery, particularly for challenging antitumor and retroviral drugs in cancer and AIDS treatment. Additionally, they exhibit prowess in bio-imaging applications. Beyond drug delivery, Zr-MOFs are notable for their mechanical, thermal, and chemical stability, making them increasingly relevant in engineering. The rising demand for stable, non-toxic Zr-MOFs facilitating facile nanoparticle formation, especially in drug delivery and imaging, is noteworthy. This review focuses on biocompatible zirconium-based metal-organic frameworks (Zr-MOFs) for controlled delivery in treating diseases like cancer and AIDS. These MOFs play a key role in theranostic approaches, integrating diagnostics and therapy. Additionally, their utility in bio-imaging underscores their versatility in advancing medical applications.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida , Estructuras Metalorgánicas , Neoplasias , Humanos , Medicina de Precisión , Circonio
7.
J Mater Chem B ; 12(3): 552-576, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38116755

RESUMEN

Cancer poses a formidable challenge, necessitating improved treatment strategies. Metal-based drugs and nanotechnology offer new hope in this battle. Versatile gold complexes and functionalized gold nanoparticles exhibit unique properties like biologically inert behaviour, outstanding light absorption, and heat-conversion abilities. These nanoparticles can be finely tuned for drug delivery, enabling precise and targeted cancer therapy. Their exceptional drug-loading capacity and low toxicity, stemming from excellent stability, biocompatibility, and customizable shapes, make them a promising option for enhancing cancer treatment outcomes and improving diagnostic imaging. Leveraging these attributes, researchers can design more effective and targeted cancer therapeutics. The potential of functionalized gold nanoparticles to advance cancer treatment and diagnostics holds a promising avenue for further exploration and development in the fight against cancer. This review article delves into the finely tuned attributes of functionalized gold nanoparticles, unveiling their potential for application in drug delivery for precise and targeted cancer therapy.


Asunto(s)
Nanopartículas del Metal , Neoplasias , Humanos , Oro/uso terapéutico , Nanopartículas del Metal/uso terapéutico , Sistemas de Liberación de Medicamentos/métodos , Neoplasias/tratamiento farmacológico , Nanotecnología/métodos
8.
PLoS One ; 18(6): e0285473, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37343020

RESUMEN

Candida auris, the youngest Candida species, is known to cause candidiasis and candidemia in humans and has been related to several hospital outbreaks. Moreover, Candida auris infections are largely resistant to the antifungal drugs currently in clinical use, necessitating the development of novel medications and approaches to treat such infections. Following up on our previous studies that demonstrated eugenol tosylate congeners (ETCs) to have antifungal activity, several ETCs (C1-C6) were synthesized to find a lead molecule with the requisite antifungal activity against C. auris. Preliminary tests, including broth microdilution and the MUSE cell viability assay, identified C5 as the most active derivative, with a MIC value of 0.98 g/mL against all strains tested. Cell count and viability assays further validated the fungicidal activity of C5. Apoptotic indicators, such as phosphatidylserine externalization, DNA fragmentation, mitochondrial depolarization, decreased cytochrome c and oxidase activity and cell death confirmed that C5 caused apoptosis in C. auris isolates. The low cytotoxicity of C5 further confirmed the safety of using this derivative in future studies. To support the conclusions drawn in this investigation, additional in vivo experiments demonstrating the antifungal activity of this lead compound in animal models will be needed.


Asunto(s)
Antifúngicos , Candidiasis Invasiva , Animales , Humanos , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Candida auris , Eugenol/farmacología , Pruebas de Sensibilidad Microbiana , Apoptosis , Candidiasis Invasiva/tratamiento farmacológico , Puntos de Control del Ciclo Celular
9.
Front Nutr ; 10: 1177897, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37252233

RESUMEN

Obesity presents a major health challenge that increases the risk of several non-communicable illnesses, such as but not limited to diabetes, hypertension, cardiovascular diseases, musculoskeletal and neurological disorders, sleep disorders, and cancers. Accounting for nearly 8% of global deaths (4.7 million) in 2017, obesity leads to diminishing quality of life and a higher premature mortality rate among affected individuals. Although essentially dubbed as a modifiable and preventable health concern, prevention, and treatment strategies against obesity, such as calorie intake restriction and increasing calorie burning, have gained little long-term success. In this manuscript, we detail the pathophysiology of obesity as a multifactorial, oxidative stress-dependent inflammatory disease. Current anti-obesity treatment strategies, and the effect of flavonoid-based therapeutic interventions on digestion and absorption, macronutrient metabolism, inflammation and oxidative stress and gut microbiota has been evaluated. The use of several naturally occurring flavonoids to prevent and treat obesity with a long-term efficacy, is also described.

10.
Pharmaceutics ; 15(4)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37111565

RESUMEN

Candida albicans and Staphylococcus aureus, representing two different kingdoms, are the most frequently isolated pathogens from invasive infections. Their pathogenic attributes, combined with drug resistance, make them a major threat and a challenge to successful treatments, mainly when involved in polymicrobial biofilm-associated infections. In the present study, we investigated the antimicrobial potential of Lactobacillus metabolite extracts (LMEs) purified from cell-free supernatant of four Lactobacillus strains (KAU007, KAU0010, KAU0021, and Pro-65). Furthermore, LME obtained from the strain KAU0021 (LMEKAU0021), being the most effective, was analyzed for its anti-biofilm property against mono- and polymicrobial biofilms formed by C. albicans and S. aureus. The impact of LMEKAU0021 on membrane integrity in single and mixed culture conditions was also evaluated using propidium iodide. The MIC values recorded for LMEKAU0021 was 406 µg/mL, 203 µg/mL, and 406 µg/mL against planktonic cells of C. albicans SC5314, S. aureus and polymicrobial culture, respectively. The LMEKAU0021 at sub-MIC values potentially abrogates both biofilm formation as well as 24 h mature mono- and polymicrobial biofilms. These results were further validated using different microscopy and viability assays. For insight mechanism, LMEKAU0021 displayed a strong impact on cell membrane integrity of both pathogens in single and mixed conditions. A hemolytic assay using horse blood cells at different concentrations of LMEKAU0021 confirmed the safety of this extract. The results from this study correlate the antimicrobial and anti-biofilm properties of lactobacilli against bacterial and fungal pathogens in different conditions. Further in vitro and in vivo studies determining these effects will support the aim of discovering an alternative strategy for combating serious polymicrobial infections caused by C. albicans and S. aureus.

11.
J Infect Public Health ; 16(2): 233-249, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36603376

RESUMEN

Over the last few years, the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) unleashed a global public health catastrophe that had a substantial influence on human physical and mental health, the global economy, and socio-political dynamics. SARS-CoV-2 is a respiratory pathogen and the cause of ongoing COVID-19 pandemic, which testified how unprepared humans are for pandemics. Scientists and policymakers continue to face challenges in developing ideal therapeutic agents and vaccines, while at the same time deciphering the pathology and immunology of SARS-CoV-2. Challenges in the early part of the pandemic included the rapid development of diagnostic assays, vaccines, and therapeutic agents. The ongoing transmission of COVID-19 is coupled with the emergence of viral variants that differ in their transmission efficiency, virulence, and vaccine susceptibility, thus complicating the spread of the pandemic. Our understanding of how the human immune system responds to these viruses as well as the patient groups (such as the elderly and immunocompromised individuals) who are often more susceptible to serious illness have both been aided by this epidemic. COVID-19 causes different symptoms to occur at different stages of infection, making it difficult to determine distinct treatment regimens employed for the various clinical phases of the disease. Unsurprisingly, determining the efficacy of currently available medications and developing novel therapeutic strategies have been a process of trial and error. The global scientific community collaborated to research and develop vaccines at a neck-breaking speed. This review summarises the overall picture of the COVID-19 pandemic, different mutations in SARS-CoV-2, immune response, and the treatment modalities against SARS-CoV-2.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiología , COVID-19/inmunología , COVID-19/terapia , Mutación , Pandemias/prevención & control , SARS-CoV-2/genética
12.
Bioorg Med Chem Lett ; 73: 128922, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35934269

RESUMEN

Although Candida auris was only identified in the year 2009, it has rapidly spread in more than a dozen countries and is proving more deadly and notorious. In our previous studies, we reported on the tremendous antifungal potential of a series of cinnamaldehyde based azole derivatives against fluconazole susceptible and resistant clinical isolates of Candida albicans and identified a promising lead molecule (6f). In this study, the effect of this compound on the viability and physiology of cell death in C. auris was assessed. The impact of compound 6f on cell cycle, oxidative stress enzymes and transcriptional profile of genes encoding these oxidative stress enzymes was also analysed. The results confirmed that compound 6f possessed the minimum inhibitory concentration of 0.98 µg/mL and prevented the growth and caused death in yeast cells. Furthermore, the compound at subinhibitory and inhibitory concentrations blocked the cell cycle in C. auris at S phase and G2/M phase and inhibited expression as well as activity of antioxidant enzymes that resulted in production of reactive oxygen species. Altogether, compound 6f showed potential antifungal activity against a virulent strain of C. auris and was able to induce oxidative stress and arrested cell cycle in C. auris and therefore, it can be considered as a strong candidate for antifungal drug development against C. auris.


Asunto(s)
Antifúngicos , Azoles , Acroleína/análogos & derivados , Antifúngicos/metabolismo , Antifúngicos/farmacología , Antioxidantes/metabolismo , Antioxidantes/farmacología , Azoles/metabolismo , Azoles/farmacología , Candida , Puntos de Control del Ciclo Celular , Pruebas de Sensibilidad Microbiana
13.
J Fungi (Basel) ; 8(7)2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35887444

RESUMEN

Candida albicans is the most dominant and prevalent cause of fungal infections in humans. Azoles are considered as first-line drugs for the treatment of these infections. However, their prolonged and insistent use has led to multidrug resistance and treatment failures. To overcome this, modification or derivatization of the azole ring has led to the development of new and effective antifungal molecules. In a previous study, we reported on the development of new triazole-based molecules as potential antifungal agents against Candida auris. In this study, the most potent molecules from the previous study were docked and simulated with lanosterol 14-alpha demethylase enzyme. These compounds were further evaluated for in vitro susceptibility testing against C. albicans. In silico results revealed favorable structural dynamics of the compounds, implying that the compounds would be able to effectively bind to the target enzyme, which was further manifested by the strong interaction of the test compounds with the amino acid residues of the target enzyme. In vitro studies targeting quantification of ergosterol content revealed that pta1 was the most active compound and inhibited ergosterol production by >90% in both drug-susceptible and resistant C. albicans isolates. Furthermore, RT-qPCR results revealed downregulation of ERG11 gene when C. albicans cells were treated with the test compound, which aligns with the decreased ergosterol content. In addition, the active triazole derivatives were also found to be potent inhibitors of biofilm formation. Both in silico and in vitro results indicate that these triazole derivatives have the potential to be taken to the next level of antifungal drug development.

14.
Braz J Microbiol ; 53(2): 565-582, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35301694

RESUMEN

Population of drug-resistant bacteria have increased at an alarming rate in the past few decades. The major reason for increasing drug resistance is the lack of new antibiotics and limited drug targets. It has therefore been a vital task to develop new antibiotics with different drug targets. Two such targets are biofilm formation and quorum sensing. Quorum sensing is cell to cell communication used by bacteria that initiates many important survival processes and aids in establishing pathogenesis. Both biofilm and quorum sensing are inter-related processes and play a major role in physiological and pathogenesis processes. In this study, five novel imidazole derivatives (IMA-1-IMA-5) were synthesised and tested for their antibacterial and anti-quorum sensing activities against Chromobacterium violaceum using different in silico and in vitro techniques following the standard protocols. In silico results revealed that all compounds were able to effectively bind to and interact sufficiently with the target protein CviR. CviR is a protein to which autoinducers bind to initiate the quorum sensing process. In silico results also revealed that the compounds generated favourable structural dynamics implying that the compounds would be able to effectively bind to CviR and inhibit quorum sensing. Susceptibility results revealed that IMA-1 is the most active of all the derivatives against both planktonic cells and biofilms. Qualitative and quantitative evaluation of anti-quorum sensing activity at sub-inhibitory concentrations of these compounds also revealed high activity for IMA-1. Down-regulation of most of the quorum sensing genes when cells were treated with the test compounds affirmed the high anti-quorum sensing activities of these compounds. The results from this study are promising and urges on the use of anti-quorum sensing and biofilm disrupting molecules to combat multi-drug resistance problem.


Asunto(s)
Antiinfecciosos , Percepción de Quorum , Antibacterianos/química , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Antifúngicos/farmacología , Biopelículas , Chromobacterium/genética , Descubrimiento de Drogas , Imidazoles/farmacología , Pseudomonas aeruginosa
15.
Bioorg Chem ; 115: 105260, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34399319

RESUMEN

For combating life-threatening infections caused by Candida albicans there is an urgent requirement of new antifungal agents with a targeted activity and low host cytotoxicity. Manipulating the mechanistic basis of cell death decision in yeast may provide an alternative approach for future antifungal therapeutics. Herein, the effect of an active citral derivative (Cd1) over the physiology of cell death in C. albicans was assessed. The viability of C. albicans SC5314 cells was determined by broth microdilution assay. The crucial morphological changes and apoptotic markers in Cd1-exposed yeast cells were analyzed. Subsequently the results confirmed that Cd1 arrested growth and caused death in yeast cells. Furthermore, this molecule inhibited antioxidant enzymes that resulted in production of reactive oxygen species. DNA fragmentation and condensation, phosphatidylserine exposure at the outer leaflet of cell membrane, mitochondrial disintegration as well as accumulation of cells at G2/M phase of the cell cycle were recorded. Altogether, this derivative induced apoptotic-type cell death in C. albicans SC5314.


Asunto(s)
Monoterpenos Acíclicos/farmacología , Antifúngicos/farmacología , Apoptosis/efectos de los fármacos , Candida albicans/efectos de los fármacos , Monoterpenos Acíclicos/química , Antifúngicos/química , Puntos de Control del Ciclo Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad
16.
J Adv Res ; 29: 121-135, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33842010

RESUMEN

Introduction: The fungal pathogen Candida auris, is a serious threat to public health and is associated with bloodstream infections causing high mortality particularly in patients with serious medical problems. As this pathogen is generally resistant to all the available classes of antifungals, there is a constant demand for novel antifungal drugs with new mechanisms of antifungal action. Objective: Therefore, in this study we synthesised six novel piperidine based 1,2,3-triazolylacetamide derivatives (pta1-pta6) and tested their antifungal activity and mechanism of action against clinical C. auris isolates. Methods: Antifungal susceptibility testing was done to estimate MIC values of piperidine derivatives following CLSI recommended guidelines. MUSE Cell Analyzer was used to check cell viability and cell cycle arrest in C. auris after exposure to piperidine derivatives using different kits. Additionally, fluorescence microscopy was done to check the effect of test compound on C. auris membrane integrity and related apoptotic assays were performed to confirm cellular apoptosis using different apoptosis markers. Results: Out of the six derivatives; pta1, pta2 and pta3 showed highest active with MIC values from 0.24 to 0.97 µg/mL and MFC ranging from 0.97 to 3.9 µg/mL. Fungicidal behaviour of these compounds was confirmed by cell count and viability assay. Exposure to test compounds at sub-inhibitory and inhibitory concentrations resulted in disruption of C. auris plasma membrane. Further in-depth studies showed that these derivatives were able to induce apoptosis and cell cycle arrest in S-phase. Furthermore, the compounds demonstrated lower toxicity profile. Conclusion: Present study suggests that the novel derivatives (pta1-pta3) induce apoptotic cell death and cell cycle arrest in C. auris and could be potential candidates against C. auris infections.


Asunto(s)
Antifúngicos/farmacología , Apoptosis/efectos de los fármacos , Candida/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Piperidinas/química , Piperidinas/farmacología , Acetamidas/química , Antifúngicos/química , Candidiasis/tratamiento farmacológico , Candidiasis/metabolismo , Supervivencia Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Farmacorresistencia Fúngica , Humanos , Pruebas de Sensibilidad Microbiana , Salud Pública , Triazoles/química
17.
Arch Microbiol ; 203(4): 1451-1459, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33392626

RESUMEN

With an upsurge in multidrug resistant bacteria backed by biofilm defence armours, there is a desperate need of new antibiotics with a non-traditional mechanism of action. Targeting bacteria by misguiding them or halting their communication is a new approach that could offer a new way to combat the multidrug resistance problem. Quorum sensing is considered to be the achilles heel of bacteria that has a lot to offer. Since, both quorum sensing and biofilm formation have been related to drug resistance and pathogenicity, in this study we synthesised new derivatives of citral with antiquorum sensing and biofilm disrupting properties. We previously reported antimicrobial and antiquorum sensing activity of citral and herein we report the synthesis and evaluation of citral and its derivatives (CD1-CD3) for antibacterial, antibiofilm and antiquorum sensing potential against Chromobacterium violaceum using standard methods. Preliminary results revealed that CD1 is the most active of all the derivatives. Qualitative and quantitative evaluation of antiquorum sensing activity at sub-inhibitory concentrations of these compounds also revealed high activity for CD1 followed by CD2, CD3 and citral. These compounds also inhibit biofilm formation at subinhibitory concentrations without causing any bacterial growth inhibition. These results were replicated by RT-qPCR with down regulation of the quorum sensing genes when C. violaceum was treated with these test compounds. Overall, the results are quite encouraging, revealing that biofilm and quorum sensing are interrelated processes and also indicating the potential of these derivatives to impede bacterial communication and biofilm formation.


Asunto(s)
Monoterpenos Acíclicos/farmacología , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Chromobacterium/efectos de los fármacos , Percepción de Quorum/efectos de los fármacos , Monoterpenos Acíclicos/química , Antibacterianos/química , Biopelículas/crecimiento & desarrollo , Chromobacterium/fisiología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Percepción de Quorum/genética
18.
Curr Pharm Des ; 27(25): 2835-2847, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33302856

RESUMEN

Quorum sensing is defined as a cell to cell communication between micro-organisms, which enables micro-organisms to behave as multicellular organisms. Quorum sensing enables many collaborative benefits such as synchronisation of virulence factors and biofilm formation. Both quorum sensing, as well as biofilm formation, encourage the development of drug resistance in micro-organisms. Biofilm formation and quorum sensing are causally linked to each other, playing a role in the pathogenesis of the micro-organisms. With the increasing drug resistance against the available antibiotics and antifungal medications, scientists are combining different options to develop new strategies. Such strategies rely on the inhibition of the communication and virulence factors rather than on killing or inhibiting the growth of the micro-organisms. This review encompasses the communication technique used by micro-organisms, how micro-organism resistance is linked to quorum sensing, and various chemical strategies to combat quorum sensing, thereby, drug resistance. Several compounds have been identified as quorum sensing inhibitors and are known to be effective in reducing resistance as they do not kill the pathogens but rather disrupt their communication. Natural compounds have been identified as anti-quorum sensing agents. However, natural compounds have several disadvantages. Therefore, the need for the development of synthetic or semi-synthetic compounds has arisen. This review argues that antiquorum sensing compounds are effective in disrupting quorum sensing and could, therefore be effective in reducing micro-organism drug resistance.


Asunto(s)
Preparaciones Farmacéuticas , Percepción de Quorum , Antibacterianos/farmacología , Biopelículas , Resistencia a Múltiples Medicamentos
19.
RSC Adv ; 11(62): 39349-39361, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-35492449

RESUMEN

Coordination compounds from simple transition metals are robust substitutes for platinum-based complexes due to their remarkable anticancer properties. In a quest to find new metal complexes that could substitute or augment the platinum based chemotherapy we synthesized three transition metal complexes C1-C3 with Cu(ii), Ni(ii), and Co(ii) as the central metal ions, respectively, and evaluated them for their anticancer activity against the human keratinocyte (HaCaT) cell line and human cervical cancer (HeLa) cell lines. These complexes showed different activity profiles with the square planar copper complex C1 being the most active with IC50 values lower than those of the widely used anticancer drug cisplatin. Assessment of the morphological changes by DAPI staining and ROS generation by DCFH-DA assay exposed that the cell death occurred by caspase-3 mediated apoptosis. C1 displayed interesting interactions with Ct-DNA, evidenced by absorption spectroscopy and validated by docking studies. Together, our results suggest that binding of the ligand to the DNA-binding domain of the p53 tumor suppressor (p53DBD) protein and the induction of the apoptotic hallmark protein, caspase-3, upon treatment with the metal complex could be positively attributed to a higher level of ROS and the subsequent DNA damage (oxidation), generated by the complex C1, that could well explain the interesting anticancer activity observed for this complex.

20.
ACS Med Chem Lett ; 11(4): 566-574, 2020 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-32292565

RESUMEN

Opportunistic fungal pathogens including Candida albicans are responsible for the alarming rise in hospital acquired infections and millions of deaths worldwide. The current treatment modalities are not enough to handle this situation, and therefore, new treatment modalities and strategies are desperately needed. In this direction, we synthesized a series of azole based acetohydrazide derivatives of cinnamaldehyde and subjected it to antifungal activity evaluation. Preliminary antifungal activity evaluation revealed tremendous antifungal potential of some of the derivatives against fluconazole susceptible and resistant clinical isolates of Candida albicans. Although all the compounds in the series are structurally similar except for the presence of different substituents on the phenyl ring of the acetohydrazide pendent, they sharply differed in their activity profile. Further mechanism of action studies revealed that these compounds have an apoptotic effect on C. albicans confirmed via Annexin V-FITC staining and TUNEL assay.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...