Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FEMS Yeast Res ; 1(1): 33-45, 2001 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12702461

RESUMEN

Glucose-induced cAMP signalling in Saccharomyces cerevisiae requires extracellular glucose detection via the Gpr1-Gpa2 G-protein coupled receptor system and intracellular glucose-sensing that depends on glucose uptake and phosphorylation. The glucose uptake requirement can be fulfilled by any glucose carrier including the Gal2 permease or by intracellular hydrolysis of maltose. Hence, the glucose carriers do not seem to play a regulatory role in cAMP signalling. Also the glucose carrier homologues, Snf3 and Rgt2, are not required for glucose-induced cAMP synthesis. Although no further metabolism beyond glucose phosphorylation is required, neither Glu6P nor ATP appears to act as metabolic trigger for cAMP signalling. This indicates that a regulatory function may be associated with the hexose kinases. Consistently, intracellular acidification, another known trigger of cAMP synthesis, can bypass the glucose uptake requirement but not the absence of a functional hexose kinase. This may indicate that intracellular acidification can boost a downstream effect that amplifies the residual signal transmitted via the hexose kinases when glucose uptake is too low.


Asunto(s)
AMP Cíclico/metabolismo , Subunidades alfa de la Proteína de Unión al GTP , Regulación Fúngica de la Expresión Génica , Glucosa/metabolismo , Receptores Acoplados a Proteínas G , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Transporte Biológico , Proteínas Fúngicas/metabolismo , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Hexoquinasa/metabolismo , Concentración de Iones de Hidrógeno , Fosforilación , Receptores de Superficie Celular/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Oncogene ; 19(17): 2147-54, 2000 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-10815806

RESUMEN

Ras proteins are small GTPases playing a pivotal role in cell proliferation and differentiation. Their activation state depends on the competing action of GTPase Activating Proteins (GAP) and Guanine nucleotide Exchange Factors (GEF). A tryptophan residue (Trp1056 in CDC25Mm-GEF), conserved in all ras-specific GEFs identified so far has been previously shown to be essential for GEF activity. Its substitution with glutamic acid results in a catalytically inactive mutant, which is able to efficiently displace wild-type GEF from p21ras and to originate a stable ras/GEF binary complex due to the reduced affinity of the nucleotide-free ras/GEF complex for the incoming nucleotide. We show here that this 'ras-sequestering property' can be utilized to attenuate ras signal transduction pathways in mouse fibroblasts transformed by oncogenic ras. In fact overexpression of the dominant negative GEFW1056E in stable transfected cells strongly reduces intracellular ras-GTP levels in k-ras transformed fibroblasts. Accordingly, the transfected fibroblasts revert to wild-type phenotype on the basis of morphology, cell cycle and anchorage independent growth. The reversion of the transformed phenotype is accompanied by DNA endoreduplication. The possible use of dominant negative ras-specific GEFs as a tool to down-regulate tumor growth is discussed.


Asunto(s)
Transformación Celular Neoplásica/genética , Genes ras , Factores de Intercambio de Guanina Nucleótido/genética , Proteínas ras/metabolismo , Animales , Pruebas de Carcinogenicidad , División Celular/genética , Línea Celular Transformada , Regulación hacia Abajo , Femenino , Fibroblastos/patología , Genes Dominantes , Factores de Intercambio de Guanina Nucleótido/metabolismo , Guanosina Trifosfato/genética , Guanosina Trifosfato/metabolismo , Ratones , Ratones Desnudos , Mutación Missense , Transducción de Señal , Proteínas ras/genética , ras-GRF1/genética , ras-GRF1/metabolismo
3.
Mol Microbiol ; 32(4): 753-64, 1999 May.
Artículo en Inglés | MEDLINE | ID: mdl-10361279

RESUMEN

The role of mild oxidative stresses elicited by diethylmaleate (DEM)-induced glutathione depletion in the progression of the yeast cell cycle has been investigated. We found that different wild-type strains are sensitive to oxidative stresses induced by similar DEM doses: approximately 1 mM on YPD plates, 5-10 mM in shaken flasks. At lower doses, DEM caused a transient decrease in growth rate, largely because of a decreased G1-to-S transition. Treatment with higher DEM doses leads to complete growth arrest, with most cells found in the unbudded G1 phase of the cell cycle. DEM treatment resulted in transcriptional induction of stress-responsive element (STRE)-controlled genes and was relieved by treatment with the antioxidant N-acetyl cysteine. Reciprocal shift experiments with cdc25 and cdc28 mutants showed that the major cell cycle arrest point was located in the Start area, at or near the CDC25-mediated step, before the step mediated by the CDC28 cyclin-dependent kinase. The DEM-induced G1 arrest requires a properly regulated RAS pathway and can be bypassed by overexpressing the G1-specific cyclin CLN2. However, cells with either a deregulated RAS pathway or overexpressing CLN2 failed to grow and arrested as budded cells, indicating that a second DEM-sensitive cell cycle step exists.


Asunto(s)
Ciclo Celular/genética , Genes Fúngicos , Genes ras , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/genética , Acetilcisteína/farmacología , División Celular/efectos de los fármacos , División Celular/genética , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/genética , ADN/análisis , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Glutatión/metabolismo , Interfase/genética , Maleatos/farmacología , Estrés Oxidativo/genética
4.
FEBS Lett ; 402(2-3): 251-5, 1997 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-9037205

RESUMEN

In Saccharomyces cerevisiae maltose utilization requires a functional MAL locus, each composed of three genes: MALR (gene 3) encoding a regulatory protein, MALT (gene 1) encoding maltose permease and MALS (gene 2) encoding maltase. We show that constitutive activation of the RAS/protein kinase A pathway severely reduces growth of MAL1 strains on maltose. This may be a consequence of reduction in MALT mRNA, reduced Vmax and increased catabolite inactivation of the MALT-encoded maltose transporter in the MAL1 strain. Mutations in the GGS1/TPS1 gene, which restricts glucose influx and possibly affects signalling, relieve carbon catabolite repression on both maltase and maltose permease and reduce maltose permease inactivation.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Genes Fúngicos , Maltosa/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transactivadores/metabolismo , alfa-Glucosidasas/metabolismo , Proteínas ras/metabolismo , Cinética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Monosacáridos , ARN Mensajero/biosíntesis , Proteínas Recombinantes/metabolismo , Transactivadores/genética , Transcripción Genética , alfa-Glucosidasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...