Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(6): 114317, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38848213

RESUMEN

Naive CD4+ T cells must differentiate in order to orchestrate immunity to Plasmodium, yet understanding of their emerging phenotypes, clonality, spatial distributions, and cellular interactions remains incomplete. Here, we observe that splenic polyclonal CD4+ T cells differentiate toward T helper 1 (Th1) and T follicular helper (Tfh)-like states and exhibit rarer phenotypes not elicited among T cell receptor (TCR) transgenic counterparts. TCR clones present at higher frequencies exhibit Th1 skewing, suggesting that variation in major histocompatibility complex class II (MHC-II) interaction influences proliferation and Th1 differentiation. To characterize CD4+ T cell interactions, we map splenic microarchitecture, cellular locations, and molecular interactions using spatial transcriptomics at near single-cell resolution. Tfh-like cells co-locate with stromal cells in B cell follicles, while Th1 cells in red pulp co-locate with activated monocytes expressing multiple chemokines and MHC-II. Spatial mapping of individual transcriptomes suggests that proximity to chemokine-expressing monocytes correlates with stronger effector phenotypes in Th1 cells. Finally, CRISPR-Cas9 gene disruption reveals a role for CCR5 in promoting clonal expansion and Th1 differentiation. A database of cellular locations and interactions is presented: https://haquelab.mdhs.unimelb.edu.au/spatial_gui/.


Asunto(s)
Linfocitos T CD4-Positivos , Diferenciación Celular , Malaria , Animales , Ratones , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Malaria/inmunología , Malaria/parasitología , Ratones Endogámicos C57BL , Fenotipo , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores CCR5/metabolismo , Receptores CCR5/genética , Bazo/inmunología , Células TH1/inmunología
2.
Immunol Cell Biol ; 100(7): 482-496, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35706327

RESUMEN

Previous studies investigating innate leukocyte recruitment into the brain after cerebral ischemia have shown conflicting results. Using distinct cell surface and intracellular markers, the current study evaluated the contributions of innate immune cells to the poststroke brain following 1-h middle cerebral artery occlusion (tMCAO) or permanent MCAO (pMCAO), and assessed whether these cells ascribed to an inflammatory state. Moreover, we examined whether there is evidence for leukocyte infiltration into the contralateral (CL) hemisphere despite the absence of stroke infarct. We observed the recruitment of peripheral neutrophils, monocytes and macrophages into the hemisphere ipsilateral (IL) to the ischemic brain infarct at 24 and 96 h following both tMCAO and pMCAO. In addition, we found evidence of increased leukocyte recruitment to the CL hemisphere but to a lesser extent than the IL hemisphere after stroke. Robust production of intracellular cytokines in the innate immune cell types examined was most evident at 24 h after pMCAO. Specifically, brain-associated neutrophils, monocytes and macrophages demonstrated stroke-induced production of tumor necrosis factor-α (TNF-α) and interleukin (IL)-1ß, while only monocytes and macrophages exhibit a significant expression of arginase 1 (Arg1) after stroke. At 96 h after stroke, brain-resident microglia demonstrated production of TNF-α and IL-1ß following both tMCAO and pMCAO. At this later timepoint, neutrophils displayed TNF-α production and brain-associated macrophages exhibited elevation of IL-1ß and Arg1 after tMCAO. Further, pMCAO induced significant expression of Arg1 and IL-1ß in monocytes and macrophages at 96 h, respectively. These results revealed that brain-associated innate immune cells display various stroke-induced inflammatory states that are dependent on the experimental stroke setting.


Asunto(s)
Encéfalo , Inmunidad Innata , Inflamación , Accidente Cerebrovascular Isquémico , Leucocitos , Encéfalo/inmunología , Encéfalo/patología , Isquemia Encefálica/inmunología , Isquemia Encefálica/patología , Inmunidad Innata/inmunología , Inflamación/inmunología , Inflamación/patología , Accidente Cerebrovascular Isquémico/inmunología , Accidente Cerebrovascular Isquémico/patología , Leucocitos/inmunología , Leucocitos/patología , Microglía/inmunología , Microglía/patología , Monocitos/inmunología , Monocitos/patología , Accidente Cerebrovascular/inmunología , Accidente Cerebrovascular/patología , Factor de Necrosis Tumoral alfa/inmunología
3.
Immunol Cell Biol ; 99(9): 924-935, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33894069

RESUMEN

Clinical trials involving the blockage of peripheral inflammatory leukocyte recruitment into the brain have puzzlingly led to either no significant improvement in stroke outcome, or even worsened outcomes and increased mortality, prompting a re-evaluation of our understanding into the neuroinflammatory processes after stroke. Whilst traditionally understood as simple effectors of the innate immune system, emerging research in vascular disease biology has redefined the neutrophil as a specialized and highly specific cell type with dynamic functional capacity. Indeed, emerging experimental evidence indicates that neutrophils display diverse roles in the acute stages of ischemic stroke with the ability to elicit both pro-inflammatory and anti-inflammatory effects. Currently, there is some uncertainty as to whether neutrophil diversity is beneficial or harmful in stroke as their interactions with the resident cells of the brain, such as microglia and neurons, would potentially elicit heterogeneous outcomes. Current treatments for patients with stroke aim to remove the vascular blockage and to restore blood flow, but there are currently no drug treatments for managing the loss of functional brain tissue nor restoration of microglial and neuronal damage. If these hypothesized wound-healing functions of neutrophils can be validated in a stroke setting, promoting the recruitment of this type of neutrophils into the injured brain tissue may form a promising therapeutic target for the majority of stroke patients currently without treatment. In this review, we will provide an update on recent research that has explored neutrophil heterogeneity in the neuroinflammatory cascade after ischemic stroke.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular , Encéfalo , Humanos , Microglía , Neutrófilos
4.
Front Immunol ; 12: 619366, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33708211

RESUMEN

Ulcerative colitis is an inflammatory disease of the colon that is associated with colonic neutrophil accumulation. Recent evidence indicates that diet alters the composition of the gut microbiota and influences host-pathogen interactions. Specifically, bacterial fermentation of dietary fiber produces metabolites called short-chain fatty acids (SCFAs), which have been shown to protect against various inflammatory diseases. However, the effect of fiber deficiency on the key initial steps of inflammation, such as leukocyte-endothelial cell interactions, is unknown. Moreover, the impact of fiber deficiency on neutrophil recruitment under basal conditions and during inflammation in vivo is unknown. Herein, we hypothesized that a fiber-deficient diet promotes an inflammatory state in the colon at baseline and predisposes the host to more severe colitis pathology. Mice fed a no-fiber diet for 14 days showed significant changes in the gut microbiota and exhibited increased neutrophil-endothelial interactions in the colonic microvasculature. Although mice fed a no-fiber diet alone did not have observable colitis-associated symptoms, these animals were highly susceptible to low dose (0.5%) dextran sodium sulphate (DSS)-induced model of colitis. Supplementation of the most abundant SCFA, acetate, prevented no-fiber diet-mediated enrichment of colonic neutrophils and colitis pathology. Therefore, dietary fiber, possibly through the actions of acetate, plays an important role in regulating neutrophil recruitment and host protection against inflammatory colonic damage in an experimental model of colitis.


Asunto(s)
Quimiotaxis de Leucocito/inmunología , Colitis/etiología , Fibras de la Dieta/deficiencia , Microbioma Gastrointestinal , Infiltración Neutrófila/inmunología , Animales , Biomarcadores , Adhesión Celular , Colitis/metabolismo , Colitis/patología , Sulfato de Dextran/efectos adversos , Dieta , Modelos Animales de Enfermedad , Células Endoteliales , Recuento de Leucocitos , Masculino , Metagenómica/métodos , Ratones , ARN Ribosómico 16S
5.
Transl Stroke Res ; 11(3): 387-401, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31709500

RESUMEN

Infection is a leading cause of death in patients with stroke; however, the impact of cerebral infarct size or location on infectious outcome is unclear. To examine the effect of infarct size on post-stroke infection, we utilised the intraluminal middle-cerebral artery occlusion (MCAO) mouse model of ischemic stroke and adjusted the duration of arterial occlusion. At 1 day following stroke onset, the proportion of mice with infection was significantly greater in mice that had larger infarct sizes. Additionally, the presence of lung infection in these mice with severe strokes extended past 2 days, suggestive of long-term immune impairment. At the acute phase, our data demonstrated an inverse relationship between infarct volume and the number of circulating leukocytes, indicating the elevated risk of infection in more severe stroke is associated with reduced cellularity in peripheral blood, owing predominately to markedly decreased lymphocyte numbers. In addition, the stroke-induced reduction of lymphocyte-to-neutrophil ratio was also evident in the lung of all post-stroke animals. To investigate the effect of infarct location on post-stroke infection, we additionally performed a photothrombotic (PT) model of stroke and using an innovative systematic approach of analysis, we found the location of cerebral infarct does not impact on the susceptibility of post-stroke infection, confirming the greater role of infarct volume over infarct location in the susceptibility to infection. Our experimental findings were validated in a clinical setting and reinforced that stroke severity, and not infarct location, influences the risk of infection after stroke.


Asunto(s)
Infecciones Bacterianas/complicaciones , Accidente Cerebrovascular/microbiología , Accidente Cerebrovascular/patología , Anciano , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Infarto de la Arteria Cerebral Media , Masculino , Ratones Endogámicos C57BL , Factores de Riesgo , Índice de Severidad de la Enfermedad
6.
Aging Cell ; 18(5): e12980, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31199577

RESUMEN

Bacterial infection a leading cause of death among patients with stroke, with elderly patients often presenting with more debilitating outcomes. The findings from our retrospective study, supported by previous clinical reports, showed that increasing age is an early predictor for developing fatal infectious complications after stroke. However, exactly how and why older individuals are more susceptible to infection after stroke remains unclear. Using a mouse model of transient ischaemic stroke, we demonstrate that older mice (>12 months) present with greater spontaneous bacterial lung infections compared to their younger counterparts (7-10 weeks) after stroke. Importantly, we provide evidence that older poststroke mice exhibited elevated intestinal inflammation and disruption in gut barriers critical in maintaining colonic integrity following stroke, including reduced expression of mucin and tight junction proteins. In addition, our data support the notion that the localized pro-inflammatory microenvironment driven by increased tumour necrosis factor-α production in the colon of older mice facilitates the translocation and dissemination of orally inoculated bacteria to the lung following stroke onset. Therefore, findings of this study demonstrate that exacerbated dysfunction of the intestinal barrier in advanced age promotes translocation of gut-derived bacteria and contributes to the increased risk to poststroke bacterial infection.


Asunto(s)
Envejecimiento/metabolismo , Colon/metabolismo , Neumonía/metabolismo , Accidente Cerebrovascular/metabolismo , Infecciones Urinarias/metabolismo , Enfermedad Aguda , Anciano , Animales , Estudios de Cohortes , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Estudios Retrospectivos , Factores de Riesgo
7.
J Neuroinflammation ; 15(1): 293, 2018 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-30348168

RESUMEN

BACKGROUND: High-fat feeding and hyperglycemia, key risk factors for the development of metabolic syndrome (MetS), are emerging to associate with increased risk of developing dementia and cognitive decline. Despite this, clinical and experimental studies have yet to elucidate the specific contributions of either high-fat feeding or hyperglycemia to potential neuroinflammatory components. In this study, we delineate these individual components of MetS in the development of neuroinflammation. METHODS: Male C57Bl/6 J adult mice were treated with either citrate vehicle (CIT) or streptozotocin (STZ; 55 mg/kg) 3, 5 and 7 days before commencement of either a normal or high-fat diet for 9 or 18 weeks. By creating separate models of high-fat feeding, STZ-induced hyperglycemia, as well as in combination, we were able to delineate the specific effects of a high-fat diet and hyperglycemia on the brain. Throughout the feeding regime, we measured the animals' body weight and fasting blood glucose levels. At the experimental endpoint, we assessed plasma levels of insulin, glycated haemoglobin and performed glucose tolerance testing. In addition, we examined the effect of high fat-feeding and hyperglycemia on the levels of systemic inflammatory cytokines, gliosis in the hippocampus and immune infiltration in cerebral hemispheric tissue. Furthermore, we used intravital multiphoton microscopy to assess leukocyte-endothelial cell interactions in the cerebral vasculature of mice in vivo. RESULTS: We showed that acute hyperglycemia induces regional-specific effects on the brain by elevating microglial numbers and promotes astrocytosis in the hippocampus. In addition, we demonstrated that chronic hyperglycemia supported the recruitment of peripheral GR1+ granulocytes to the cerebral microvasculature in vivo. Moreover, we provided evidence that these changes were independent of the systemic inflammation associated with high-fat feeding. CONCLUSIONS: Hyperglycemia alone preferentially induces microglial numbers and astrocytosis in the hippocampus and is associated with the peripheral recruitment of leukocytes to the cerebrovasculature, but not systemic inflammation. High-fat feeding alone, and in combination with hyperglycemia, increases the systemic pro-inflammatory cytokine milieu but does not result in brain-specific immune gliosis. These results shed light on the specific contributions of high-fat feeding and hyperglycemia as key factors of MetS in the development of neuroinflammation.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Encefalitis/etiología , Hiperglucemia/complicaciones , Sistema Inmunológico/patología , Síndrome Metabólico/complicaciones , Síndrome Metabólico/etiología , Animales , Antibióticos Antineoplásicos/toxicidad , Glucemia , Proteínas de Unión al Calcio/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Encefalitis/inmunología , Encefalitis/patología , Ayuno/sangre , Hiperglucemia/inducido químicamente , Hiperglucemia/patología , Insulina/sangre , Leucocitos/efectos de los fármacos , Leucocitos/metabolismo , Leucocitos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/metabolismo , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/patología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Estreptozocina/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA