Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Med ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641750

RESUMEN

Although B cells are implicated in multiple sclerosis (MS) pathophysiology, a predictive or diagnostic autoantibody remains elusive. In this study, the Department of Defense Serum Repository (DoDSR), a cohort of over 10 million individuals, was used to generate whole-proteome autoantibody profiles of hundreds of patients with MS (PwMS) years before and subsequently after MS onset. This analysis defines a unique cluster in approximately 10% of PwMS who share an autoantibody signature against a common motif that has similarity with many human pathogens. These patients exhibit antibody reactivity years before developing MS symptoms and have higher levels of serum neurofilament light (sNfL) compared to other PwMS. Furthermore, this profile is preserved over time, providing molecular evidence for an immunologically active preclinical period years before clinical onset. This autoantibody reactivity was validated in samples from a separate incident MS cohort in both cerebrospinal fluid and serum, where it is highly specific for patients eventually diagnosed with MS. This signature is a starting point for further immunological characterization of this MS patient subset and may be clinically useful as an antigen-specific biomarker for high-risk patients with clinically or radiologically isolated neuroinflammatory syndromes.

2.
JAMA Neurol ; 81(3): 240-247, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38285456

RESUMEN

Importance: Antemortem infection is a risk factor for sudden infant death syndrome (SIDS)-the leading postneonatal cause of infant mortality in the developed world. Manifestations of infection and inflammation are not always apparent in clinical settings or by standard autopsy; thus, enhanced resolution approaches are needed. Objective: To ascertain whether a subset of SIDS cases is associated with neuroinflammation and occult infection. Design, Setting, and Participants: In this case-control study, postmortem fluids from SIDS cases and controls collected between July 2011 and November 2018 were screened for elevated inflammatory markers, specifically cerebrospinal fluid (CSF) neopterin and CSF and serum cytokines. CSF, liver, and brain tissue from SIDS cases with elevated CSF neopterin were subjected to metagenomic next-generation sequencing (mNGS) to probe for infectious pathogens. Brainstem tissue from a subset of these cases was analyzed by single-nucleus RNA sequencing (snRNAseq) to measure cell type-specific gene expression associated with neuroinflammation and infection. All tissue and fluid analyses were performed from April 2019 to January 2023 in a pathology research laboratory. Included was autopsy material from infants dying of SIDS and age-matched controls dying of known causes. Exposures: There were no interventions or exposures. Main Outcomes and Measures: CSF neopterin levels were measured by high-performance liquid chromatography. Cytokines were measured by multiplex fluorometric assay. mNGS was performed on liver, CSF, brain, and brainstem tissue. snRNAseq was performed on brainstem tissue. Results: A cohort of 71 SIDS cases (mean [SD] age, 55.2 [11.4] postconceptional weeks; 42 male [59.2%]) and 20 controls (mean [SD] age, 63.2 [16.9] postconceptional weeks; 11 male [55.0%]) had CSF and/or serum available. CSF neopterin was screened in 64 SIDS cases and 15 controls, with no exclusions. Tissues from 6 SIDS cases were further analyzed. For CSF neopterin measures, SIDS samples were from infants with mean (SD) age of 54.5 (11.3) postconceptional weeks (38 male [59.4%]) and control samples were from infants with mean (SD) age of 61.5 (17.4) postconceptional weeks (7 male [46.7%]). A total of 6 SIDS cases (9.3%) with high CSF neopterin were identified, suggestive of neuroinflammation. mNGS detected human parechovirus 3 (HPeV3) in tissue and CSF from 1 of these 6 cases. snRNAseq of HPeV3-positive brainstem tissue (medulla) revealed dramatic enrichment of transcripts for genes with predominately inflammatory functions compared with 3 age-matched SIDS cases with normal CSF neopterin levels. Conclusions and Relevance: Next-generation molecular tools in autopsy tissue provide novel insight into pathogens that go unrecognized by normal autopsy methodology, including in infants dying suddenly and unexpectedly.


Asunto(s)
Encefalitis , Muerte Súbita del Lactante , Lactante , Humanos , Masculino , Persona de Mediana Edad , Muerte Súbita del Lactante/genética , Muerte Súbita del Lactante/patología , Enfermedades Neuroinflamatorias , Estudios de Casos y Controles , Multiómica , Neopterin , Tronco Encefálico/patología , Encefalitis/complicaciones , Citocinas
3.
J Neurovirol ; 29(6): 678-691, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37851324

RESUMEN

Unbiased high-throughput sequencing (HTS) has enabled new insights into the diversity of agents implicated in central nervous system (CNS) infections. The addition of positive selection capture methods to HTS has enhanced the sensitivity while reducing sequencing costs and the complexity of bioinformatic analysis. Here we report the use of virus capture-based sequencing for vertebrate viruses (VirCapSeq-VERT) and bacterial capture sequencing (BacCapSeq) in investigating CNS infections. Thirty-four samples were categorized: (1) patients with definitive CNS infection by routine testing; (2) patients meeting clinically the Brighton criteria (BC) for meningoencephalitis; (3) patients with presumptive infectious etiology highest on the differential. RNA extracts from cerebrospinal fluid (CSF) were used for VirCapSeq-VERT, and DNA extracts were used for BacCapSeq analysis. Among 8 samples from known CNS infections in group 1, VirCapSeq and BacCapSeq confirmed 3 expected diagnoses (42.8%), were negative in 2 (25%), yielded an alternative result in 1 (11.1%), and did not detect 2 expected negative pathogens. The confirmed cases identified HHV-6, HSV-2, and VZV while the negative samples included JCV and HSV-2. In groups 2 and 3, 11/26 samples (42%) were positive for at least one pathogen; however, 27% of the total samples (7/26) were positive for commensal organisms. No microbial nucleic acids were detected in negative control samples. HTS showed limited promise for pathogen identification in presumed CNS infectious diseases in our small sample. Before conducting larger-scale prospective studies to assess the clinical value of this novel technique, clinicians should understand the benefits and limitations of using this modality.


Asunto(s)
Meningoencefalitis , Virus , Humanos , Estudios Prospectivos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Herpesvirus Humano 2/genética
4.
medRxiv ; 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37205595

RESUMEN

Although B cells are implicated in multiple sclerosis (MS) pathophysiology, a predictive or diagnostic autoantibody remains elusive. Here, the Department of Defense Serum Repository (DoDSR), a cohort of over 10 million individuals, was used to generate whole-proteome autoantibody profiles of hundreds of patients with MS (PwMS) years before and subsequently after MS onset. This analysis defines a unique cluster of PwMS that share an autoantibody signature against a common motif that has similarity with many human pathogens. These patients exhibit antibody reactivity years before developing MS symptoms and have higher levels of serum neurofilament light (sNfL) compared to other PwMS. Furthermore, this profile is preserved over time, providing molecular evidence for an immunologically active prodromal period years before clinical onset. This autoantibody reactivity was validated in samples from a separate incident MS cohort in both cerebrospinal fluid (CSF) and serum, where it is highly specific for patients eventually diagnosed with MS. This signature is a starting point for further immunological characterization of this MS patient subset and may be clinically useful as an antigen-specific biomarker for high-risk patients with clinically- or radiologically-isolated neuroinflammatory syndromes.

5.
Semin Neurol ; 43(2): 297-311, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37094803

RESUMEN

The benefits of coronavirus disease 2019 (COVID-19) vaccination significantly outweigh its risks on a public health scale, and vaccination has been crucial in controlling the spread of SARS-CoV-2. Nonetheless, several reports of adverse events following vaccination have been published.To summarize reports to date and assess the extent and quality of evidence regarding possible serious adverse neurological events following COVID-19 vaccination, focusing on Food and Drug Administration (FDA)-approved vaccines in the United States (BNT162b2, mRNA-1273, and Ad26.COV2.S).A review of literature from five major electronic databases (PubMed, Medline, Embase, Cochrane Library, and Google Scholar) was conducted between December 1, 2020 and June 5, 2022. Articles included in the review were systematic reviews and meta-analysis, cohort studies, retrospective studies, case-control studies, case series, and reports. Editorials, letters, and animal studies were excluded, since these studies did not include quantitative data regarding adverse side effects of vaccination in human subjects.Of 149 total articles and 97 (65%) were case reports or case series. Three phase 3 trials initially conducted for BNT162b2, MRNA-1273, and Ad26.COV2.S were included in the analysis.The amount and quality of evidence for possible neurological adverse events in the context of FDA-approved COVID-19 vaccinations is overall low tier. The current body of evidence continues to suggest that COVID-19 vaccinations have a high neurological safety profile; however, the risks and benefits of vaccination must continue to be closely monitored.


Asunto(s)
COVID-19 , Animales , Humanos , Vacuna nCoV-2019 mRNA-1273 , Ad26COVS1 , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Estudios Retrospectivos , SARS-CoV-2 , Vacunación/efectos adversos
6.
Ann Neurol ; 93(3): 615-628, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36443898

RESUMEN

OBJECTIVE: Prospective studies of encephalitis are rare in regions where encephalitis is prevalent, such as low middle-income Southeast Asian countries. We compared the diagnostic yield of local and advanced tests in cases of pediatric encephalitis in Myanmar. METHODS: Children with suspected subacute or acute encephalitis at Yangon Children's Hospital, Yangon, Myanmar, were prospectively recruited from 2016-2018. Cohort 1 (n = 65) had locally available diagnostic testing, whereas cohort 2 (n = 38) had advanced tests for autoantibodies (ie, cell-based assays, tissue immunostaining, studies with cultured neurons) and infections (ie, BioFire FilmArray multiplex Meningitis/Encephalitis multiplex PCR panel, metagenomic sequencing, and pan-viral serologic testing [VirScan] of cerebrospinal fluid). RESULTS: A total of 20 cases (13 in cohort 1 and 7 in cohort 2) were found to have illnesses other than encephalitis. Of the 52 remaining cases in cohort 1, 43 (83%) had presumed infectious encephalitis, of which 2 cases (4%) had a confirmed infectious etiology. Nine cases (17%) had presumed autoimmune encephalitis. Of the 31 cases in cohort 2, 23 (74%) had presumed infectious encephalitis, of which one (3%) had confirmed infectious etiology using local tests only, whereas 8 (26%) had presumed autoimmune encephalitis. Advanced tests confirmed an additional 10 (32%) infections, 4 (13%) possible infections, and 5 (16%) cases of N-methyl-D-aspartate receptor antibody encephalitis. INTERPRETATION: Pediatric encephalitis is prevalent in Myanmar, and advanced technologies increase identification of treatable infectious and autoimmune causes. Developing affordable advanced tests to use globally represents a high clinical and research priority to improve the diagnosis and prognosis of encephalitis. ANN NEUROL 2023;93:615-628.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso , Enfermedades Transmisibles , Encefalitis , Encefalitis Infecciosa , Meningitis , Niño , Humanos , Meningitis/líquido cefalorraquídeo , Meningitis/diagnóstico , Estudios Prospectivos , Mianmar , Encefalitis/líquido cefalorraquídeo
7.
Viruses ; 13(11)2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34835092

RESUMEN

Varicella vaccine meningitis is an uncommon delayed adverse event of vaccination. Varicella vaccine meningitis has been diagnosed in 12 children, of whom 3 were immunocompromised. We now report two additional cases of vaccine meningitis in twice-immunized immunocompetent children and we perform further testing on a prior third case. We used three methods to diagnose or investigate cases of varicella vaccine meningitis, none of which have been used previously on this disease. These include metagenomic next-generation sequencing and cytokine multiplex profiling of cerebrospinal fluid and immunology exome analysis of white blood cells. In one new case, the diagnosis was confirmed by metagenomic next-generation sequencing of cerebrospinal fluid. Both varicella vaccine virus and human herpesvirus 7 DNA were detected. We performed cytokine multiplex profiling on the cerebrospinal fluid of two cases and found ten elevated biomarkers: interferon gamma, interleukins IL-1RA, IL-6, IL-8, IL-10, IL-17F, chemokines CXCL-9, CXCL-10, CCL-2, and G-CSF. In a second new case, we performed immunology exome sequencing on a panel of 356 genes, but no errors were found. After a review of all 14 cases, we concluded that (i) there is no common explanation for this adverse event, but (ii) ingestion of an oral corticosteroid burst 3-4 weeks before onset of vaccine meningitis may be a risk factor in some cases.


Asunto(s)
Vacuna contra la Varicela/efectos adversos , Citocinas/líquido cefalorraquídeo , Herpes Zóster/inmunología , Meningitis Viral/etiología , Meningitis Viral/inmunología , Adolescente , Biomarcadores/líquido cefalorraquídeo , Vacuna contra la Varicela/inmunología , Niño , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunocompetencia , Masculino , Metagenómica , Secuenciación del Exoma
8.
JAMA Neurol ; 78(12): 1503-1509, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34694339

RESUMEN

Importance: Neuropsychiatric manifestations of COVID-19 have been reported in the pediatric population. Objective: To determine whether anti-SARS-CoV-2 and autoreactive antibodies are present in the cerebrospinal fluid (CSF) of pediatric patients with COVID-19 and subacute neuropsychiatric dysfunction. Design, Setting, and Participants: This case series includes 3 patients with recent SARS-CoV-2 infection as confirmed by reverse transcriptase-polymerase chain reaction or IgG serology with recent exposure history who were hospitalized at the University of California, San Francisco Benioff Children's Hospital and for whom a neurology consultation was requested over a 5-month period in 2020. During this period, 18 total children were hospitalized and tested positive for acute SARS-CoV-2 infection by reverse transcriptase-polymerase chain reaction or rapid antigen test. Main Outcomes and Measures: Detection and characterization of CSF anti-SARS-CoV-2 IgG and antineural antibodies. Results: Of 3 included teenaged patients, 2 patients had intrathecal anti-SARS-CoV-2 antibodies. CSF IgG from these 2 patients also indicated antineural autoantibodies on anatomic immunostaining. Autoantibodies targeting transcription factor 4 (TCF4) in 1 patient who appeared to have a robust response to immunotherapy were also validated. Conclusions and Relevance: Pediatric patients with COVID-19 and prominent subacute neuropsychiatric symptoms, ranging from severe anxiety to delusional psychosis, may have anti-SARS-CoV-2 and antineural antibodies in their CSF and may respond to immunotherapy.


Asunto(s)
Anticuerpos Antivirales/líquido cefalorraquídeo , Autoanticuerpos/líquido cefalorraquídeo , COVID-19/complicaciones , COVID-19/inmunología , Trastornos Mentales/líquido cefalorraquídeo , Trastornos Mentales/etiología , Enfermedades del Sistema Nervioso/líquido cefalorraquídeo , Enfermedades del Sistema Nervioso/etiología , Adolescente , Animales , Ansiedad/etiología , Ansiedad/psicología , Autoinmunidad , Femenino , Humanos , Masculino , Fumar Marihuana/inmunología , Ratones , Trastornos del Movimiento/etiología , Examen Neurológico , Factor de Transcripción 4/inmunología
9.
Cell Rep Med ; 2(5): 100288, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33969321

RESUMEN

Individuals with coronavirus disease 2019 (COVID-19) frequently develop neurological symptoms, but the biological underpinnings of these phenomena are unknown. Through single-cell RNA sequencing (scRNA-seq) and cytokine analyses of cerebrospinal fluid (CSF) and blood from individuals with COVID-19 with neurological symptoms, we find compartmentalized, CNS-specific T cell activation and B cell responses. All affected individuals had CSF anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies whose target epitopes diverged from serum antibodies. In an animal model, we find that intrathecal SARS-CoV-2 antibodies are present only during brain infection and not elicited by pulmonary infection. We produced CSF-derived monoclonal antibodies from an individual with COVID-19 and found that these monoclonal antibodies (mAbs) target antiviral and antineural antigens, including one mAb that reacted to spike protein and neural tissue. CSF immunoglobulin G (IgG) from 5 of 7 patients showed antineural reactivity. This immune survey reveals evidence of a compartmentalized immune response in the CNS of individuals with COVID-19 and suggests a role of autoimmunity in neurologic sequelae of COVID-19.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...