Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
J Med Microbiol ; 72(5)2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37252851

RESUMEN

Introduction. Klebsiella pneumoniae is a major threat to public health worldwide. It is the causative agent for multiple disease presentations including urinary tract infection, septicemia, liver abscess, wound infection and respiratory tract infection. K. pneumoniae causes community- and hospital-acquired pneumonia, which is a devastating disease associated with high mortality rates.Hypothesis. There is a growing concern about the emergence of multidrug-resistant K. pneumoniae strains complicating the treatment with the current available therapeutics; therefore, there is an urgent need for the development of new antimicrobial agents.Aim. K. pneumoniae causes an acute respiratory disease in mice and in the current work we investigated the capability to perform non-invasive monitoring of bioluminescent Klebsiella to monitor therapeutic efficacy.Methodology. We engineered a bioluminescence reporter strain of K. pneumoniae to monitor the impact of antibiotics in a murine respiratory disease model.Results. We demonstrate that bioluminescence correlates with bacterial numbers in host tissues allowing for a non-invasive enumeration of bacterial replication in vivo. Light production is directly linked to bacterial viability, and this novel bioluminescent K. pneumoniae strain enabled monitoring of the efficacy of meropenem therapy in arresting bacterial proliferation in the lung.Conclusion. The use of non-invasive bioluminescent imaging improves preclinical animal model testing to detect study outcome earlier and with higher sensitivity.


Asunto(s)
Infecciones por Klebsiella , Infecciones del Sistema Respiratorio , Ratones , Animales , Klebsiella pneumoniae , Meropenem/uso terapéutico , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Pruebas de Sensibilidad Microbiana
3.
J Vis Exp ; (192)2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36912512

RESUMEN

Surrogate animal models of disease are subject to the 3Rs of Responsible Research. There is a frequent revisiting of refinements to animal models to ensure that both animal welfare and scientific insights advance with the availability of new technologies. This article demonstrates the use of Simplified Whole Body Plethysmography (sWBP) to non-invasively study respiratory failure in a model of lethal respiratory melioidosis. sWBP has the sensitivity to detect breathing in mice through the entirety of the course of the disease, allowing for the moribund-associated symptoms (bradypnea and hypopnea) to be measured and potentially used to develop humane endpoint criteria. Some of the benefits of sWBP in the context of respiratory disease are that host breath monitoring comes the closest of any physiologic measurement at assessing dysfunction of the primary infected tissue, namely, the lung. In addition to biological significance, the use of sWBP is rapid and non-invasive, minimizing stress in research animals. This work demonstrates the use of in-house sWBP apparatus to monitor disease throughout the course of respiratory failure in the murine model of respiratory melioidosis.


Asunto(s)
Melioidosis , Insuficiencia Respiratoria , Ratones , Animales , Melioidosis/diagnóstico , Pletismografía Total , Pulmón , Respiración
5.
Cancer Immunol Immunother ; 72(4): 1047-1058, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36074159

RESUMEN

Anti-PD-1 antibody-mediated activation of type 17 T-cells undermines checkpoint inhibitor therapy in the LSL-KrasG12D murine lung cancer model. Herein, we establish that the Th17 subset is the primary driver of resistance to therapy demonstrate that the ontogeny of dysplasia-associated Th17 cells is driven by microbiota-conditioned macrophages; and identify the IL-17-COX-2-PGE2 axis as the mediator of CD8+ cytotoxic T-lymphocyte de-sensitization to checkpoint inhibitor therapy. Specifically, anti-PD-1 treatment of LSL-KrasG12D mice, in which CD4+ T-cells were deficient for RORc, resulted in a 60% increase in CTL cytotoxicity and a 2.5-fold reduction in tumor burden confirming the critical role of Th17 cells in resistance to therapy. Lung-specific depletion of microbiota reduced Th17 cell prevalence and tumor burden by 5- and 2.5-fold, respectively; establishing a link between microbiota and Th17 cell-driven tumorigenesis. Importantly, lung macrophages from microbiota sufficient, but not from microbiota-deficient, mice polarized naïve CD4+ T-cells to a Th17 phenotype, highlighting their role in bridging microbiota and Th17 immunity. Further, treatment with anti-PD-1 enhanced COX-2 and PGE2 levels, whereas neutralization of IL-17 diminished this effect. In contrast, inhibition of COX-2 rescued CTL activity and restored tumor suppression in anti-PD-1-treated mice, revealing the molecular basis of IL-17-mediated resistance to checkpoint blockade. Clinical implications of these findings are discussed.


Asunto(s)
Linfocitos T Citotóxicos , Células Th17 , Ratones , Animales , Ciclooxigenasa 2/farmacología , Proteínas Proto-Oncogénicas p21(ras) , Interleucina-17 , Dinoprostona/farmacología , Células Mieloides
6.
Microbiol Spectr ; 10(5): e0269322, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36094219

RESUMEN

The rise in infections caused by antibiotic-resistant bacteria is outpacing the development of new antibiotics. The ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) are a group of clinically important bacteria that have developed resistance to multiple antibiotics and are commonly referred to as multidrug resistant (MDR). The medical and research communities have recognized that, without new antimicrobials, infections by MDR bacteria will soon become a leading cause of morbidity and death. Therefore, there is an ever-growing need to expedite the development of novel antimicrobials to combat these infections. Toward this end, we set out to refine an existing mouse model of pulmonary Pseudomonas aeruginosa infection to generate a robust preclinical tool that can be used to rapidly and accurately predict novel antimicrobial efficacy. This refinement was achieved by characterizing the virulence of a panel of genetically diverse MDR P. aeruginosa strains in this model, by both 50% lethal dose (LD50) analysis and natural history studies. Further, we defined two antibiotic regimens (aztreonam and amikacin) that can be used as comparators during the future evaluation of novel antimicrobials, and we confirmed that the model can effectively differentiate between successful and unsuccessful treatments, as predicted by in vitro inhibitory data. This validated model represents an important tool in our arsenal to develop new therapies to combat MDR P. aeruginosa strains, with the ability to provide rapid preclinical evaluation of novel antimicrobials and support data from clinical studies during the investigational drug development process. IMPORTANCE The prevalence of antibiotic resistance among bacterial pathogens is a growing problem that necessitates the development of new antibiotics. Preclinical animal models are important tools to facilitate and speed the development of novel antimicrobials. Successful outcomes in animal models not only justify progression of new drugs into human clinical trials but also can support FDA decisions if clinical trial sizes are small due to a small population of infections with specific drug-resistant strains. However, in both cases the preclinical animal model needs to be well characterized and provide robust and reproducible data. Toward this goal, we have refined an existing mouse model to better predict the efficacy of novel antibiotics. This improved model provides an important tool to better predict the clinical success of new antibiotics.


Asunto(s)
Amicacina , Pseudomonas aeruginosa , Ratones , Humanos , Animales , Amicacina/farmacología , Aztreonam/farmacología , Pruebas de Sensibilidad Microbiana , Drogas en Investigación/farmacología , Farmacorresistencia Bacteriana Múltiple , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias
7.
Antibiotics (Basel) ; 10(8)2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34438996

RESUMEN

BACKGROUND: Pseudomonas aeruginosa (PsA) is a common etiology of bacteria-mediated lower respiratory tract infections, including pneumonia, hospital acquired pneumonia (HAP), and ventilator-associated pneumonia (VAP). Given the paucity of novel antibiotics in our foreseeable pipeline, developing novel non-antibiotic antimicrobial therapies saliently targeting drug resistant PsA isolates remains a priority. Lytic bacteriophages (or phages) have come under scrutiny as a potential antimicrobial for refractory bacterial infections. We evaluated intratracheally and intraperitoneally (IP) administered phage therapy (with/without meropenem) in an acute immunocompromised mouse model of multi-drug resistant (MDR) PsA pulmonary infection. The MDR P. aeruginosa respiratory disease model used in these studies was developed to investigate novel therapies that might have efficacy as either monotherapies or as combination therapy with meropenem. METHODS: We utilized eight-week-old, 18 g BALB/cJ female mice and an MDR strain of PsA (UNC-D). Mice were immunosuppressed with cyclophosphamide. We employed a three-phage cocktail targeting PsA (PaAH2ΦP (103), PaBAP5Φ2 (130), and PaΦ (134)), confirmed to exhibit in vitro suppression of the infecting isolate out to 45 h. Suppression was confirmed with phages acting in isolation and in combination with meropenem. RESULTS: IP administration of phage did not protect mice from death. A one-time delivery of phage directly to the lungs via a single intubation-mediated, intratracheal (IMIT) instillation protected mice from lethal infection. Protection was observed despite delaying therapy out to 6 h. Finally, we observed that, by slowing the progression of infection by treatment with a sub-efficacious dose of meropenem, we could protect the mice from lethal infection via IP phage administration coupled to meropenem, observing partial additive effects of phage-antibiotic combination therapy. CONCLUSIONS: A personalized phage cocktail administered via IMIT exhibits high therapeutic efficacy, despite delayed treatment of 6 h in a lethal MDR PsA pneumonia model. IP phage alone did not forestall mortality, but exhibited efficacy when combined with meropenem and IMIT-administered phage. These additive effects of combined IP phage and meropenem confirm that phage may indeed reach the lung bed via the systemic circulation and protect mice if the infection is not too acute. Therefore, adjunctive phage therapy with concerted attention to identifying optimal phage targeting of the infecting isolate in vitro may exhibit transformative potential for combating the specter of MDR bacterial infections. Phage should serve as an integral component of a four-pronged approach coupled with antibiotics, source control, and immune optimization.

8.
Open Forum Infect Dis ; 7(8): ofaa236, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32766380

RESUMEN

BACKGROUND: Plasma gelsolin (pGSN) is an abundant circulating protein quickly consumed by extensive tissue damage. Marked depletion is associated with later poor outcomes in diverse clinical circumstances. Repletion with recombinant human (rhu)-pGSN in animal models of inflammation lessens mortality and morbidity. METHODS: Neutropenic mice were treated with different meropenem doses ±12 mg of rhu-pGSN commencing 1 day before an intratracheal challenge with multidrug-resistant Pseudomonas aeruginosa. Survival, bacterial counts, and pulmonary pathology were compared between corresponding meropenem groups with and without rhu-pGSN. RESULTS: Overall survival was 35/64 (55%) and 46/64 (72%) in mice given meropenem without and with rhu-pGSN, respectively (Δ = 17%; 95% CI, 1-34). In control mice receiving meropenem 1250 mg/kg/d where the majority died, the addition of rhu-pGSN increased survival from 5/16 (31%) to 12/16 (75%) (Δ = 44%; 95% CI, 13-75). Survival with minor lung injury was found in 26/64 (41%) mice receiving only meropenem, vs 38/64 (59%) in mice given meropenem plus rhu-pGSN (Δ = 19%; 95% CI, 2-36). CONCLUSIONS: In a series of dose-ranging experiments, both mortality and lung injury were reduced by the addition of rhu-pGSN to meropenem against carbapenem-resistant P. aeruginosa. Rhu-pGSN offers a novel candidate therapy for antibiotic-resistant pneumonia.

9.
J Nucl Med ; 59(1): 134-139, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28848037

RESUMEN

2-18F-fluorodeoxysorbitol (18F-FDS) has been shown to be a promising agent with high selectivity and sensitivity in imaging bacterial infection. The objective of our study was to validate 18F-FDS as a potential radiopharmaceutical for imaging bacterial infection longitudinally in the lung. Methods: Albino C57 female mice were intratracheally inoculated with either live or dead Klebsiella pneumoniae to induce either lung infection or lung inflammation. One group of mice was imaged to monitor disease progression. PET/CT was performed on days 0, 1, 2, and 3 after inoculation using either 18F-FDS or 18F-FDG (n = 12 for each tracer). The other group was first screened by bioluminescent imaging (BLI) to select only mice with visible infection (region of interest > 108 ph/s) for PET/CT imaging with 18F-FDS (n = 12). For the inflammation group, 5 mice each were imaged with PET/CT using either 18F-FDS or 18F-FDG from days 1 to 4 after inoculation. Results: For studies of disease progression, BLI showed noticeable lung infection on day 2 after inoculation and significantly greater infection on day 3. Baseline imaging before inoculation showed no focal areas of lung consolidation on CT and low uptake in the lung for both PET radiotracers. On day 2, an area of lung consolidation was identified on CT, with a corresponding 2.5-fold increase over baseline for both PET radiotracers. On day 3, widespread areas of patchy lung consolidation were found on CT, with a drastic increase in uptake for both 18F-FDS and 18F-FDG (9.2 and 3.9). PET and BLI studies showed a marginal correlation between 18F-FDG uptake and colony-forming units (r = 0.63) but a much better correlation for 18F-FDS (r = 0.85). The uptake ratio of infected lung over inflamed lung was 8.5 and 1.7 for 18F-FDS and 18F-FDG on day 3. Conclusion: Uptake of both 18F-FDS and 18F-FDG in infected lung could be used to track the degree of bacterial infection measured by BLI, with a minimum detection limit of 107 bacteria. 18F-FDS, however, is more specific than 18F-FDG in differentiating K. pneumoniae lung infection from lung inflammation.


Asunto(s)
Klebsiella pneumoniae/fisiología , Pulmón/diagnóstico por imagen , Pulmón/microbiología , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Radiofármacos , Sorbitol/análogos & derivados , Animales , Femenino , Ratones , Ratones Endogámicos C57BL
10.
Artículo en Inglés | MEDLINE | ID: mdl-29312891

RESUMEN

The study of intracellular bacterial pathogens in cell culture hinges on inhibiting extracellular growth of the bacteria in cell culture media. Aminoglycosides, like gentamicin, were originally thought to poorly penetrate eukaryotic cells, and thus, while inhibiting extracellular bacteria, these antibiotics had limited effect on inhibiting the growth of intracellular bacteria. This property led to the development of the antibiotic protection assay to study intracellular pathogens in vitro. More recent studies have demonstrated that aminoglycosides slowly penetrate eukaryotic cells and can even reach intracellular concentrations that inhibit intracellular bacteria. Therefore, important considerations, such as antibiotic concentration, incubation time, and cell type need to be made when designing the antibiotic protection assay to avoid potential false positive/negative observations. Yersinia pestis, which causes the human disease known as the plague, is a facultative intracellular pathogen that can infect and replicate in macrophages. Y. pestis is sensitive to gentamicin and this antibiotic is often employed in the antibiotic protection assay to study the Y. pestis intracellular life cycle. However, a large variety of gentamicin concentrations and incubation periods have been reported in the Y. pestis literature without a clear characterization of the potential influences that variations in the gentamicin protection assay could have on intracellular growth of this pathogen. This raised concerns that variations in the gentamicin protection assay could influence phenotypes and reproducibility of data. To provide a better understanding of the potential consequences that variations in the gentamicin protection assay could have on Y. pestis, we systematically examined the impact of multiple variables of the gentamicin protection assay on Y. pestis intracellular survival in macrophages. We found that prolonged incubation periods with low concentrations of gentamicin, or short incubation periods with higher concentrations of the antibiotic, have a dramatic impact on intracellular growth. Furthermore, the degree of sensitivity of intracellular Y. pestis to gentamicin was also cell type dependent. These data highlight the importance to empirically establish cell type specific gentamicin protection assays to avoid potential artificial data in Y. pestis intracellular studies.


Asunto(s)
Antibacterianos/farmacología , Gentamicinas/farmacología , Macrófagos/microbiología , Viabilidad Microbiana/efectos de los fármacos , Yersinia pestis/efectos de los fármacos , Animales , Células Cultivadas , Microscopía Intravital , Ratones , Factores de Tiempo , Yersinia pestis/fisiología
11.
Acta Trop ; 157: 68-72, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26836271

RESUMEN

Burkholderia pseudomallei is a Tier 1 select agent and potential bioweapon. Given it is potential to cause a lethal respiratory disease, research with fully virulent B. pseudomallei is conducted in Biosafety Level 3 (BSL-3) laboratory spaces. The logistical, financial, and administrative burden of Tier 1 select agent BSL-3 research has created an interest in mitigating such burdens through the use of either attenuated B. pseudomallei strains at BSL-2, or research with surrogate species, such as Burkholderia thailandensis. Previously, attenuated B. pseudomallei auxotroph mutants (asd and purM) have been approved for exclusion from select agent requirements, allowing for in vitro studies to be conducted at BSL-2. Acapsular B. pseudomallei mutants are known to be strongly attenuated in a variety of animal models, and yet acapsular B. pseudomallei mutants do not require nutritional supplementation, and can be studied within cultured macrophages, performing phenotypically similarly to parent strains. We demonstrate that the loss of a 30.8 kb region of the wcb capsule operon allows for a dramatic >4.46 log attenuation in a hamster intraperitoneal infection model, and report that this strain, JW270, has met criteria for exclusion from select agent requirements.


Asunto(s)
Agentes de Control Biológico , Burkholderia pseudomallei/genética , Cricetinae/microbiología , Melioidosis/microbiología , Melioidosis/prevención & control , Virulencia/genética , Animales , Macrófagos , Modelos Animales
12.
Artículo en Inglés | MEDLINE | ID: mdl-26583079

RESUMEN

Respiratory melioidosis is a disease presentation of the biodefense pathogen, Burkholderia pseudomallei, which is frequently associated with a lethal septicemic spread of the bacteria. We have recently developed an improved respiratory melioidosis model to study the pathogenesis of Burkholderia pseudomallei in the lung (intubation-mediated intratracheal [IMIT] inoculation), which more closely models descriptions of human melioidosis, including prominent septicemic spread from the lung and reduced involvement of the upper respiratory tract. We previously demonstrated that the Type 3 Secretion System cluster 3 (T3SS3) is a critical virulence determinant for B. pseudomallei when delivered directly into the lung. We decided to comprehensively identify all virulence determinants required for respiratory melioidosis using the Tn-seq phenotypic screen, as well as to investigate which virulence determinants are required for dissemination to the liver and spleen. While previous studies have used Tn-seq to identify essential genes for in vitro cultured B. pseudomallei, this represents the first study to use Tn-seq to identify genes required for in vivo fitness. Consistent with our previous findings, we identified T3SS3 as the largest genetic cluster required for fitness in the lung. Furthermore, we identified capsular polysaccharide and Type 6 Secretion System cluster 5 (T6SS5) as the two additional major genetic clusters facilitating respiratory melioidosis. Importantly, Tn-seq did not identify additional, novel large genetic systems supporting respiratory melioidosis, although these studies identified additional small gene clusters that may also play crucial roles in lung fitness. Interestingly, other previously identified virulence determinants do not appear to be required for lung fitness, such as lipopolysaccharide. The role of T3SS3, capsule, and T6SS5 in lung fitness was validated by competition studies, but only T3SS3 was found to be important for respiratory melioidosis when delivered as a single strain challenge, suggesting that competition studies may provide a higher resolution analysis of fitness factors in the lung. The use of Tn-seq phenotypic screening also provided key insights into the selective pressure encountered in the liver.


Asunto(s)
Burkholderia pseudomallei/genética , Burkholderia pseudomallei/patogenicidad , Melioidosis/microbiología , Mutagénesis Insercional , Neumonía Bacteriana/microbiología , Sepsis/microbiología , Factores de Virulencia/genética , Animales , Cápsulas Bacterianas/genética , Elementos Transponibles de ADN , Modelos Animales de Enfermedad , Pruebas Genéticas , Melioidosis/patología , Ratones Endogámicos C57BL , Neumonía Bacteriana/patología , Sepsis/patología , Sistemas de Secreción Tipo III/genética , Sistemas de Secreción Tipo VI/genética
13.
Pathog Dis ; 73(5)2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25857733

RESUMEN

Pseudomonas aeruginosa is an opportunistic bacterial pathogen capable of causing a wide range of disease manifestations, including severe bacterial pneumonia. Recently, clinics have reported a rise in nosocomial infections with multidrug resistant (MDR) species, including MDR strains of P. aeruginosa. In order to quickly evaluate the efficacy of new therapeutics for MDR infections, highly reproducible and validated animal models need to be developed for pre-clinical testing. Here, we describe the characterization of two murine models to study MDR P. aeruginosa respiratory disease. We evaluated and compared these models using a non-invasive intratracheal instillation method and established the 50% lethal dose, course of infection, biometric parameters of disease and degree of pneumonia development for each model. Further, we tested meropenem as a proof-of-concept therapeutic and report efficacy data that suggests that the leukopenic model could serve a robust pre-clinical model to test novel therapeutics.


Asunto(s)
Antibacterianos/uso terapéutico , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos/métodos , Neumonía Bacteriana/microbiología , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/crecimiento & desarrollo , Animales , Biometría , Farmacorresistencia Bacteriana Múltiple , Femenino , Dosificación Letal Mediana , Meropenem , Ratones Endogámicos BALB C , Neumonía Bacteriana/tratamiento farmacológico , Neumonía Bacteriana/patología , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/patología , Pseudomonas aeruginosa/efectos de los fármacos , Tienamicinas/uso terapéutico , Resultado del Tratamiento
14.
PLoS Negl Trop Dis ; 9(1): e3441, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25569630

RESUMEN

Burkholderia pseudomallei, the bacterial agent of melioidosis, causes disease through inhalation of infectious particles, and is classified as a Tier 1 Select Agent. Optical diagnostic imaging has demonstrated that murine respiratory disease models are subject to significant upper respiratory tract (URT) colonization. Because human melioidosis is not associated with URT colonization as a prominent presentation, we hypothesized that lung-specific delivery of B. pseudomallei may enhance our ability to study respiratory melioidosis in mice. We compared intranasal and intubation-mediated intratracheal (IMIT) instillation of bacteria and found that the absence of URT colonization correlates with an increased bacterial pneumonia and systemic disease progression. Comparison of the LD50 of luminescent B. pseudomallei strain, JW280, in intranasal and IMIT challenges of albino C57BL/6J mice identified a significant decrease in the LD50 using IMIT. We subsequently examined the LD50 of both capsular polysaccharide and Type 3 Secretion System cluster 3 (T3SS3) mutants by IMIT challenge of mice and found that the capsule mutant was attenuated 6.8 fold, while the T3SS3 mutant was attenuated 290 fold, demonstrating that T3SS3 is critical to respiratory melioidosis. Our previously reported intranasal challenge studies, which involve significant URT colonization, did not identify a dissemination defect for capsule mutants; however, we now report that capsule mutants exhibit significantly reduced dissemination from the lung following lung-specific instillation, suggesting that capsule mutants are competent to spread from the URT, but not the lung. We also report that a T3SS3 mutant is defective for dissemination following lung-specific delivery, and also exhibits in vivo growth defects in the lung. These findings highlight the T3SS3 as a critical virulence system for respiratory melioidosis, not only in the lung, but also for subsequent spread beyond the lung using a model system uniquely capable to characterize the fate of lung-delivered pathogen.


Asunto(s)
Burkholderia pseudomallei/metabolismo , Burkholderia pseudomallei/patogenicidad , Pulmón/microbiología , Melioidosis/microbiología , Sistemas de Secreción Tipo III/metabolismo , Animales , Burkholderia pseudomallei/genética , Femenino , Regulación Bacteriana de la Expresión Génica , Humanos , Masculino , Melioidosis/patología , Ratones , Ratones Endogámicos C57BL , Sistemas de Secreción Tipo III/genética , Virulencia
15.
Am J Physiol Lung Cell Mol Physiol ; 308(2): L168-78, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25398987

RESUMEN

Chlorine is a toxic gas used in a variety of industrial processes and is considered a chemical threat agent. High-level chlorine exposure causes acute lung injury, but the long-term effects of acute chlorine exposure are unclear. Here we characterized chronic pulmonary changes following acute chlorine exposure in mice. A/J mice were exposed to 240 parts per million-hour chlorine or sham-exposed to air. Chlorine inhalation caused sloughing of bronchial epithelium 1 day after chlorine exposure, which was repaired with restoration of a pseudostratified epithelium by day 7. The repaired epithelium contained an abnormal distribution of epithelial cells containing clusters of club or ciliated cells rather than the uniformly interspersed pattern of these cells in unexposed mice. Although the damaged epithelium in A/J mice was repaired rapidly, and minimal airway fibrosis was observed, chlorine-exposed mice developed pneumonitis characterized by infiltration of alveoli with neutrophils and prominent, large, foamy macrophages. Levels of CXCL1/KC, CXCL5/LPS-induced CXC chemokine, granulocyte colony-stimulating factor, and VEGF in bronchoalveolar (BAL) fluid from chlorine-exposed mice showed steadily increasing trends over time. BAL protein levels were increased on day 4 and remained elevated out to day 28. The number of bacteria cultured from lungs of chlorine-exposed mice 4 wk after exposure was not increased compared with sham-exposed mice, indicating that the observed pneumonitis was not driven by bacterial infection of the lung. The results indicate that acute chlorine exposure may cause chronic abnormalities in the lungs despite rapid repair of injured epithelium.


Asunto(s)
Lesión Pulmonar Aguda/inducido químicamente , Cloro/toxicidad , Pulmón/patología , Mucosa Respiratoria/patología , Lesión Pulmonar Aguda/terapia , Administración por Inhalación , Animales , Líquido del Lavado Bronquioalveolar/química , Quimiocina CXCL1/metabolismo , Quimiocina CXCL5/metabolismo , Citocinas/biosíntesis , Células Epiteliales/citología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Inflamación/inducido químicamente , Inflamación/patología , Pulmón/microbiología , Macrófagos/patología , Ratones , Neumonía , Factor A de Crecimiento Endotelial Vascular/metabolismo
16.
PLoS One ; 9(9): e107394, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25203254

RESUMEN

Klebsiella pneumoniae is a bacterial pathogen of worldwide importance and a significant contributor to multiple disease presentations associated with both nosocomial and community acquired disease. ATCC 43816 is a well-studied K. pneumoniae strain which is capable of causing an acute respiratory disease in surrogate animal models. In this study, we performed sequencing of the ATCC 43816 genome to support future efforts characterizing genetic elements required for disease. Furthermore, we performed comparative genetic analyses to the previously sequenced genomes from NTUH-K2044 and MGH 78578 to gain an understanding of the conservation of known virulence determinants amongst the three strains. We found that ATCC 43816 and NTUH-K2044 both possess the known virulence determinant for yersiniabactin, as well as a Type 4 secretion system (T4SS), CRISPR system, and an acetonin catabolism locus, all absent from MGH 78578. While both NTUH-K2044 and MGH 78578 are clinical isolates, little is known about the disease potential of these strains in cell culture and animal models. Thus, we also performed functional analyses in the murine macrophage cell lines RAW264.7 and J774A.1 and found that MGH 78578 (K52 serotype) was internalized at higher levels than ATCC 43816 (K2) and NTUH-K2044 (K1), consistent with previous characterization of the antiphagocytic properties of K1 and K2 serotype capsules. We also examined the three K. pneumoniae strains in a novel BALB/c respiratory disease model and found that ATCC 43816 and NTUH-K2044 are highly virulent (LD50<100 CFU) while MGH 78578 is relatively avirulent.


Asunto(s)
Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/genética , Enfermedades Respiratorias/microbiología , Factores de Virulencia/genética , Virulencia/genética , Animales , Proteínas Bacterianas/genética , Secuencia de Bases , Línea Celular , ADN Bacteriano/genética , Modelos Animales de Enfermedad , Genoma Bacteriano/genética , Macrófagos/microbiología , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Análisis de Secuencia de ADN/métodos
17.
Methods Mol Biol ; 1098: 169-81, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24166377

RESUMEN

Diagnostic imaging is a powerful tool that has recently been applied towards the study of infectious diseases. Optical imaging of bioluminescently labeled bacteria in infected animals allows for real-time analysis of bacterial proliferation and dissemination during infection without sacrificing the animal. Imaging also allows for tracking of disease progression in an individual subject over time, has the potential to reveal previously overlooked sites of infection, and reduces the number of research animals used in pathogenesis studies. Here, we describe the use of a deep-cooled CCD camera imager to record light emitted from bacteria during infection. We also describe the process of correlating bioluminescence to bacterial numbers by ex vivo imaging of necropsied tissues. Together these techniques can be used to estimate bacterial burdens in host tissues both in vivo and ex vivo using bioluminescent imaging.


Asunto(s)
Mediciones Luminiscentes , Imagen Molecular/métodos , Peste , Yersinia pestis/fisiología , Crianza de Animales Domésticos , Animales , Recuento de Colonia Microbiana , Procesamiento de Imagen Asistido por Computador , Ratones
18.
Front Microbiol ; 2: 133, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21720539

RESUMEN

Pneumonia is a common manifestation of the potentially fatal disease melioidosis, caused by the select agent bacteria Burkholderia pseudomallei. In this study we describe a new model system to investigate pulmonary melioidosis in vivo using bioluminescent-engineered bacteria in a murine respiratory disease model. Studies were performed to validate that the stable, light producing B. pseudomallei strain JW280 constitutively produced light in biologically relevant host-pathogen interactions. Hairless outbred SKH1 mice were used to enhance the ability to monitor B. pseudomallei respiratory disease, and were found to be similarly susceptible to respiratory melioidosis as BALB/c mice. This represents the first demonstration of in vivo diagnostic imaging of pulmonary melioidosis permitting the detection of B. pseudomallei less than 24 h post-infection. Diagnostic imaging of pulmonary melioidosis revealed distinct temporal patterns of bacterial colonization unique to both BALB/c and SKH1 mice. Validation of these model systems included the use of the previously characterized capsule mutant, which was found to colonize the upper respiratory tract at significantly higher levels than the wild type strain. These model systems allow for high resolution detection of bacterial pulmonary disease which will facilitate studies of therapeutics and basic science evaluation of melioidosis.

19.
PLoS Pathog ; 6(5): e1000921, 2010 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-20523903

RESUMEN

Protection against virulent pathogens that cause acute, fatal disease is often hampered by development of microbial resistance to traditional chemotherapeutics. Further, most successful pathogens possess an array of immune evasion strategies to avoid detection and elimination by the host. Development of novel, immunomodulatory prophylaxes that target the host immune system, rather than the invading microbe, could serve as effective alternatives to traditional chemotherapies. Here we describe the development and mechanism of a novel pan-anti-bacterial prophylaxis. Using cationic liposome non-coding DNA complexes (CLDC) mixed with crude F. tularensis membrane protein fractions (MPF), we demonstrate control of virulent F. tularensis infection in vitro and in vivo. CLDC+MPF inhibited bacterial replication in primary human and murine macrophages in vitro. Control of infection in macrophages was mediated by both reactive nitrogen species (RNS) and reactive oxygen species (ROS) in mouse cells, and ROS in human cells. Importantly, mice treated with CLDC+MPF 3 days prior to challenge survived lethal intranasal infection with virulent F. tularensis. Similarly to in vitro observations, in vivo protection was dependent on the presence of RNS and ROS. Lastly, CLDC+MPF was also effective at controlling infections with Yersinia pestis, Burkholderia pseudomallei and Brucella abortus. Thus, CLDC+MPF represents a novel prophylaxis to protect against multiple, highly virulent pathogens.


Asunto(s)
Antibacterianos/farmacología , ADN/farmacología , Francisella tularensis/crecimiento & desarrollo , Liposomas/farmacología , Tularemia/prevención & control , Animales , Antígenos Bacterianos/farmacología , Brucella abortus/crecimiento & desarrollo , Brucella abortus/patogenicidad , Brucelosis/tratamiento farmacológico , Brucelosis/prevención & control , Burkholderia pseudomallei/crecimiento & desarrollo , Burkholderia pseudomallei/patogenicidad , Cationes/farmacología , Células Cultivadas , Francisella tularensis/patogenicidad , Humanos , Macrófagos/citología , Macrófagos/microbiología , Masculino , Melioidosis/tratamiento farmacológico , Melioidosis/prevención & control , Mesotelina , Ratones , Ratones Endogámicos C57BL , Peste/tratamiento farmacológico , Peste/prevención & control , Organismos Libres de Patógenos Específicos , Tularemia/tratamiento farmacológico , Virulencia , Yersinia pestis/crecimiento & desarrollo , Yersinia pestis/patogenicidad
20.
Infect Immun ; 77(12): 5252-61, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19752033

RESUMEN

The capsular polysaccharide of Burkholderia pseudomallei is an essential virulence determinant that is required for protection from host serum cidal activity and opsonophagocytosis. In this study, the immune response directed against a B. pseudomallei capsule mutant (JW270) was investigated in an acute respiratory murine model. JW270 was significantly attenuated in this model ( approximately 2 logs) to levels resembling those of avirulent Burkholderia thailandensis. At lethal doses, JW270 colonized the lung, liver, and spleen at levels similar to the wild-type strain levels and was found to trigger reduced pathology in the liver and spleen. Several cytokine responses were altered in these tissues, and importantly, the levels of gamma interferon were reduced in the livers and spleens of JW270-infected mice but not in the lungs. These results suggest that the capsular polysaccharide of B. pseudomallei is a critical virulence determinant in respiratory tract infections and that it is an important antigen for generating the Th1 immune response commonly observed in systemic melioidosis. Furthermore, the data suggest that host recognition of B. pseudomallei capsular polysaccharide in the lungs may not be as important to the disease outcome as the innate immune response in the peripheral organs.


Asunto(s)
Cápsulas Bacterianas/inmunología , Cápsulas Bacterianas/fisiología , Burkholderia pseudomallei/inmunología , Burkholderia pseudomallei/patogenicidad , Melioidosis/microbiología , Factores de Virulencia/inmunología , Factores de Virulencia/fisiología , Animales , Cápsulas Bacterianas/genética , Burkholderia pseudomallei/genética , Línea Celular , Recuento de Colonia Microbiana , Citocinas/metabolismo , Femenino , Eliminación de Gen , Hígado/microbiología , Hígado/patología , Pulmón/microbiología , Pulmón/patología , Macrófagos/microbiología , Ratones , Ratones Endogámicos BALB C , Operón , Índice de Severidad de la Enfermedad , Bazo/microbiología , Bazo/patología , Análisis de Supervivencia , Factores de Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...