Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38328254

RESUMEN

Here we characterize a novel pan-RAS inhibitor, ADT-007, that potently and selectively inhibited the growth of histologically diverse cancer cell lines with mutant or activated RAS irrespective of the RAS mutation or isozyme. Growth inhibition was dependent on activated RAS and associated with reduced GTP-RAS levels and MAPK/AKT signaling. ADT-007 bound RAS in lysates from sensitive cells with sub-nanomolar EC 50 values but did not bind RAS in lysates from insensitive cells with low activated RAS. Insensitivity to ADT-007 was attributed to metabolic deactivation by UGT-mediated glucuronidation, providing a detoxification mechanism to protect normal cells from pan-RAS inhibition. Molecular modeling and experiments using recombinant RAS revealed that ADT-007 binds RAS in a nucleotide-free conformation to block GTP activation. Local injection of ADT-007 strongly inhibited tumor growth in syngeneic immune competent and xenogeneic immune deficient mouse models of colorectal and pancreatic cancer and activated innate and adaptive immunity in the tumor microenvironment. SIGNIFICANCE: ADT-007 is a novel pan-RAS inhibitor with a unique mechanism of action having potential to circumvent resistance to mutant-specific KRAS inhibitors and activate antitumor immunity. The findings support further development of ADT-007 analogs and/or prodrugs with oral bioavailability as a generalizable monotherapy or combined with immunotherapy for RAS mutant cancers. BACKGROUND: It is projected that colorectal cancer (CRC) and pancreatic ductal adenocarcinoma (PDA) will cause 52,580 and 49,830 deaths in the US in 2023, respectively (1). The 5-year survival rates for CRC and PDA are 65% and 12%, respectively (1). Over 50% of CRC and 90% of PDA patients harbor mutations in KRAS genes that are associated with poor prognosis, making the development of novel KRAS inhibitors an urgent unmet medical need (2).

2.
J Ovarian Res ; 15(1): 120, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36324187

RESUMEN

A leading theory for ovarian carcinogenesis proposes that inflammation associated with incessant ovulation is a driver of oncogenesis. Consistent with this theory, nonsteroidal anti-inflammatory drugs (NSAIDs) exert promising chemopreventive activity for ovarian cancer. Unfortunately, toxicity is associated with long-term use of NSAIDs due to their cyclooxygenase (COX) inhibitory activity. Previous studies suggest the antineoplastic activity of NSAIDs is COX independent, and rather may be exerted through phosphodiesterase (PDE) inhibition. PDEs represent a unique chemopreventive target for ovarian cancer given that ovulation is regulated by cyclic nucleotide signaling. Here we evaluate PDE10A as a novel therapeutic target for ovarian cancer. Analysis of The Cancer Genome Atlas (TCGA) ovarian tumors revealed PDE10A overexpression was associated with significantly worse overall survival for patients. PDE10A expression also positively correlated with the upregulation of oncogenic and inflammatory signaling pathways. Using small molecule inhibitors, Pf-2545920 and a novel NSAID-derived PDE10A inhibitor, MCI-030, we show that PDE10A inhibition leads to decreased ovarian cancer cell growth and induces cell cycle arrest and apoptosis. We demonstrate these pro-apoptotic properties occur through PKA and PKG signaling by using specific inhibitors to block their activity. PDE10A genetic knockout in ovarian cancer cells through CRISP/Cas9 editing lead to decreased cell proliferation, colony formation, migration and invasion, and in vivo tumor growth. We also demonstrate that PDE10A inhibition leads to decreased Wnt-induced ß-catenin nuclear translocation, as well as decreased EGF-mediated activation of RAS/MAPK and AKT pathways in ovarian cancer cells. These findings implicate PDE10A as novel target for ovarian cancer chemoprevention and treatment.


Asunto(s)
Neoplasias Ováricas , beta Catenina , Femenino , Humanos , Antiinflamatorios no Esteroideos/farmacología , beta Catenina/genética , beta Catenina/metabolismo , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Carcinoma Epitelial de Ovario/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Proteínas ras/metabolismo
3.
Toxicol Mech Methods ; 31(9): 667-673, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34225579

RESUMEN

Organochlorine compounds (OC) include synthetic insecticides previously used throughout the world before being banned for their adverse effects and environmental persistence; DDT (dichlorodiphenyltrichloroethane) was one of the most widely used. Epidemiological evidence suggests that higher levels of some OC, including metabolites of DDT, such as dichlorodiphenyldichloroethylene (DDE), are associated with type 2 diabetes mellitus (T2D). DDE exposure may affect pancreatic cellular functions associated with glucose control and possibly cause beta cell dysfunction. The in vitro effect of DDE exposure on pancreatic beta cell insulin secretion was investigated using Beta-Tumor Cell-6 (B-TC-6) murine pancreatic beta cells. DDE exposure significantly increased insulin secretion suggesting a role for DDE in altering insulin synthesis and secretion. Reactive oxygen species (ROS) levels were not significantly increased indicating that oxidative stress is not responsible for the DDE-induced insulin secretion. Pancreatic and duodenal homeobox factor-1 (PDX-1) levels were not significantly increased suggesting that DDE exposure does not alter insulin transcription, but prohormone convertase (PC) levels were increased suggesting a role for DDE in altering insulin translation. Based on these in vitro results, DDE may play a role in beta cell dysfunction by affecting mechanisms that regulate insulin secretion but it is not likely to be the major mechanism behind the DDE/T2D epidemiological association.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Animales , DDT , Diabetes Mellitus Tipo 2/inducido químicamente , Diclorodifenil Dicloroetileno/toxicidad , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Ratones
4.
MedComm (2020) ; 1(2): 121-128, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33073260

RESUMEN

Approximately 30% of human cancers harbor a gain-in-function mutation in the RAS gene, resulting in constitutive activation of the RAS protein to stimulate downstream signaling, including the RAS-mitogen activated protein kinase pathway that drives cancer cells to proliferate and metastasize. RAS-driven oncogenesis also promotes immune evasion by increasing the expression of programmed cell death ligand-1, reducing the expression of major histocompatibility complex molecules that present antigens to T-lymphocytes and altering the expression of cytokines that promote the differentiation and accumulation of immune suppressive cell types such as myeloid-derived suppressor cells, regulatory T-cells, and cancer-associated fibroblasts. Together, these changes lead to an immune suppressive tumor microenvironment that impedes T-cell activation and infiltration and promotes the outgrowth and metastasis of tumor cells. As a result, despite the growing success of checkpoint immunotherapy, many patients with RAS-driven tumors experience resistance to therapy and poor clinical outcomes. Therefore, RAS inhibitors in development have the potential to weaken cancer cell immune evasion and enhance the antitumor immune response to improve survival of patients with RAS-driven cancers. This review highlights the potential of RAS inhibitors to enhance or broaden the anti-cancer activity of currently available checkpoint immunotherapy.

5.
Toxicol In Vitro ; 37: 9-14, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27565303

RESUMEN

Organochlorine compounds (OC), such as the legacy insecticides, were widespread environmental contaminants. OC including dichlorodiphenyldichloroethylene (DDE), a metabolite of the insecticide DDT, have an epidemiological association with type 2 diabetes mellitus (T2D) and may play a role in risk factors that contribute to T2D such as dyslipidemia. The liver, a potential target for DDE, plays a role in dyslipidemia. The in vitro effect of DDE on hepatocyte lipid metabolism and secretion was investigated using McArdle-RH7777 (McA) rodent hepatoma liver cells. When stimulated by the free fatty acid oleic acid (OA), DDE increased the secretion of apolipoprotein B (ApoB) suggesting a role for DDE in increasing lipid secretion. Intracellular protein levels of microsomal triglyceride transfer protein (MTP) were increased while sortilin-1 (Sort-1) levels were decreased suggesting a role for DDE in increasing lipid transport and decreasing lipid degradation. Neutral lipids such as intracellular triglycerides (TG) were decreased suggesting that DDE may alter lipid accumulation in liver cells. DDE may play a role in dyslipidemia by affecting mechanisms that regulate lipid metabolism and secretion. These in vitro results on biochemical markers of liver cell dyslipidemia support the concept that DDE exposure may play a role in the dyslipidemia frequently observed in T2D.


Asunto(s)
Diclorodifenil Dicloroetileno/toxicidad , Hepatocitos/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Apolipoproteínas B/metabolismo , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Diabetes Mellitus Tipo 2/metabolismo , Dislipidemias/metabolismo , Hepatocitos/metabolismo , Insecticidas/toxicidad , Ratas , Riesgo , Triglicéridos/metabolismo
6.
Toxicol Sci ; 135(1): 193-201, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23761300

RESUMEN

The endogenous cannabinoids 2-arachidonoylglycerol (2-AG) and anandamide (AEA) play vital roles during nervous system development. The degradation of 2-AG and AEA is mediated by monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), respectively. These enzymes are inhibited following developmental chlorpyrifos (CPF) exposure. To investigate whether this inhibition is persistent or whether accumulation of endocannabinoids in the brain occurs, 10-day-old rat pups were orally exposed daily for 7 days to either corn oil or increasing dosages of CPF (1, 2.5, or 5mg/kg), and forebrains were collected at 4, 12, 24, and 48h following the last administration. All dosages inhibited cholinesterase (ChE), FAAH, and MAGL, and elevated AEA and 2-AG levels with the greatest effect occurring at 12h with ChE, FAAH, AEA, and 2-AG and at 4h with MAGL. With the high dosage, return to control levels occurred with 2-AG (48h) only. With the medium dosage, return to control levels occurred with MAGL, 2-AG, and AEA (48h) but not with ChE or FAAH. With the low dosage, return to control levels occurred with MAGL (12h), ChE and 2-AG (24h), and AEA (48h) but not with FAAH. With the lowest dosage, peak inhibition of FAAH (52%) is greater than that of ChE (24%) and that level of FAAH inhibition is sufficient to induce a persistent pattern of elevated AEA. It is possible that this pattern of elevation could alter the appropriate development of neuronal brain circuits.


Asunto(s)
Ácidos Araquidónicos/análisis , Encéfalo/efectos de los fármacos , Cloropirifos/toxicidad , Inhibidores de la Colinesterasa/toxicidad , Endocannabinoides/análisis , Glicéridos/análisis , Insecticidas/toxicidad , Alcamidas Poliinsaturadas/análisis , Envejecimiento , Amidohidrolasas/antagonistas & inhibidores , Amidohidrolasas/metabolismo , Animales , Encéfalo/metabolismo , Femenino , Masculino , Monoacilglicerol Lipasas/antagonistas & inhibidores , Monoacilglicerol Lipasas/metabolismo , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...