Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Toxicol Rep ; 5: 383-389, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29854608

RESUMEN

Ultrafine particles (UFPs) are one of motorcycle exhaust emissions which can penetrate the lung alveoli and deposit in the kidney. This study was aimed to investigate mice kidney cell physical damage (deformation) due to motorcycle exhaust emission exposures. The motorcycle exhaust emissions were sucked from the muffler with the rate of 33 cm3/s and passed through an ultrafine particle filter system before introduced into the mice exposure chamber. The dose concentration of the exhaust emissions was varied by setting the injected time of the 20s, 40s, 60s, 80s, and 100s. The mice were exposed to the smoke in the chamber for 100 s twice a day. The impact of the ultrafine particles on the kidney was observed by identifying the histological image of the kidney cell deformation using a microscope. The exposure was conducted for 10 days. The kidney observations were carried out on day 11. The results showed that there was a significant linear correlation between the total concentration of ultrafine particles deposited in the kidneys and the physical damage percentages. The increased concentrations of ultrafine particles caused larger cell deformation to the kidneys.

2.
Exp Toxicol Pathol ; 69(8): 649-655, 2017 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-28655429

RESUMEN

Sharply increasing of motor vehicles every year contributes to amounts of ultrafine particles (UFPs) in the air. Besides, the existence of UFPs in the blood may cause erythrocyte damages that subject to shape deformation. This study was aimed to investigate the influence of UFPs in the motorcycle smoke exposed to mice in different concentrations to the erythrocyte damages. The experiments were conducted by injecting the motorcycle smoke with the varied amounts in an experimental chamber (dimension of 30×20×20cm3) where the mice were put in advance for exposuring twice a day (100s). Total numbers of UFPs in the smoke were calculated by measuring the total concentrations multiplied by the smoke debit. They were measured using a TSI 8525 P-Trak UPC. The effects of the smoke exposures in the mice's erythrocytes related to the UFPs in the smoke were observed by a binocular CX-31 Computer Microscope after the 2nd, 4th, 6th, 8th, and 10th exposure days. The erythrocyte damages were calculated from the total abnormal erythrocytes divided by the total erythrocytes. Our results showed that more UFPs exposed to mice resulted in more the erythrocytes damages. Longer exposures caused more damages of the mice erythrocytes. This study found significant correlations between the numbers of UFPs exposed to mice and the erythrocyte damages. Our finding gives important evidence that motorcycle emissions especially UFPs affect on health.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Eritrocitos/efectos de los fármacos , Motocicletas , Material Particulado/toxicidad , Emisiones de Vehículos/toxicidad , Animales , Monitoreo del Ambiente , Eritrocitos/patología , Exposición por Inhalación/análisis , Masculino , Ratones , Tamaño de la Partícula , Humo/análisis
3.
Environ Sci Technol ; 40(18): 5696-703, 2006 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-17007128

RESUMEN

The quantification of particle emission factors under controlled laboratory conditions for burning of the following five common tree species found in South East Queensland forests has been studied: Spotted Gum (Corymbia citriodora), Blue Gum (Eucalyptus tereticornis), Bloodwood (Eucalyptus intermedia), Iron Bark (Eucalyptus crebra), and Stringybark (Eucalyptus umbra). The results of the study show that the particle number emission factors and PM2.5 mass emission factors depend on the type of tree and the burning rate. For fast burning conditions, the average particle number emission factors are in the range of 3.3-5.7 x 10(15) particles/kg for woods and 0.5-6.9 x 10(15) particles/kg for leaves and branches, and the PM2.5 emission factors are in the range of 140-210 mg/kg for woods and 450-4700 mg/kg for leaves and branches. For slow burning conditions, the average particle number emission factors are in the range of 2.8-44.8 x 10(13) particles/kg for woods and 0.5-9.3 x 10(13) particles/kg for leaves and branches, and the PM2.5 emissions factors are in the range of 120-480 mg/kg for woods and 3300-4900 mg/kg for leaves and branches.


Asunto(s)
Eucalyptus/química , Incendios , Árboles/química , Tamaño de la Partícula , Queensland , Madera/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA