Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Exp Bot ; 74(17): 5166-5180, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37235800

RESUMEN

The connection between soil nitrogen availability, leaf nitrogen, and photosynthetic capacity is not perfectly understood. Because these three components tend to be positively related over large spatial scales, some posit that soil nitrogen positively drives leaf nitrogen, which positively drives photosynthetic capacity. Alternatively, others posit that photosynthetic capacity is primarily driven by above-ground conditions. Here, we examined the physiological responses of a non-nitrogen-fixing plant (Gossypium hirsutum) and a nitrogen-fixing plant (Glycine max) in a fully factorial combination of light by soil nitrogen availability to help reconcile these competing hypotheses. Soil nitrogen stimulated leaf nitrogen in both species, but the relative proportion of leaf nitrogen used for photosynthetic processes was reduced under elevated soil nitrogen in all light availability treatments due to greater increases in leaf nitrogen content than chlorophyll and leaf biochemical process rates. Leaf nitrogen content and biochemical process rates in G. hirsutum were more responsive to changes in soil nitrogen than those in G. max, probably due to strong G. max investments in root nodulation under low soil nitrogen. Nonetheless, whole-plant growth was significantly enhanced by increased soil nitrogen in both species. Light availability consistently increased relative leaf nitrogen allocation to leaf photosynthesis and whole-plant growth, a pattern that was similar between species. These results suggest that the leaf nitrogen-photosynthesis relationship varies under different soil nitrogen levels and that these species preferentially allocated more nitrogen to plant growth and non-photosynthetic leaf processes, rather than photosynthesis, as soil nitrogen increased.


Asunto(s)
Nitrógeno , Suelo , Nitrógeno/fisiología , Fotosíntesis/fisiología , Clorofila , Plantas , Fertilización , Hojas de la Planta
2.
J Exp Bot ; 72(15): 5766-5776, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34114621

RESUMEN

Plant nitrogen acquisition requires carbon to be allocated belowground to build roots and sustain microbial associations. This carbon cost to acquire nitrogen varies by nitrogen acquisition strategy; however, the degree to which these costs vary due to nitrogen availability or demand has not been well tested under controlled conditions. We grew a species capable of forming associations with nitrogen-fixing bacteria (Glycine max) and a species not capable of forming such associations (Gossypium hirsutum) under four soil nitrogen levels to manipulate nitrogen availability and four light levels to manipulate nitrogen demand in a full-factorial greenhouse experiment. We quantified carbon costs to acquire nitrogen as the ratio of total root carbon to whole-plant nitrogen within each treatment combination. In both species, light availability increased carbon costs due to a larger increase in root carbon than whole-plant nitrogen, while nitrogen fertilization generally decreased carbon costs due to a larger increase in whole-plant nitrogen than root carbon. Nodulation data indicated that G. max shifted relative carbon allocation from nitrogen fixation to direct uptake with increased nitrogen fertilization. These findings suggest that carbon costs to acquire nitrogen are modified by changes in light and nitrogen availability in species with and without associations with nitrogen-fixing bacteria.


Asunto(s)
Fabaceae , Nitrógeno , Carbono , Fijación del Nitrógeno , Raíces de Plantas , Suelo
3.
Am J Bot ; 104(7): 999-1007, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28743760

RESUMEN

PREMISE OF THE STUDY: Global change in temperature and soil nitrogen availability could affect plant community composition, potentially giving an advantage to invasive species compared to native species. We addressed how high temperatures affected CO2 assimilation parameters for invasive Phalaris arundinacea and a sedge, Carex stricta, it displaces, in natural and controlled environments. METHODS: Photosynthetic parameters were measured in a wetland in Indiana, USA during the abnormally warm year of 2012. In a growth chamber, photosynthetic parameters were measured on the plants grown under three levels of nitrogen and exposed to optimum temperatures followed by 2012-like summer conditions and then hot temperatures with an autumn-like photoperiod. KEY RESULTS: In the wetland, C. stricta exhibited signs of midsummer leaf senescence, whereas P. arundinacea maintained CO2 assimilation at ambient pCO2 (Aamb ) through mid-October. In the chamber, 2012-like conditions reduced Aamb for both species through reductions in maximum carboxylation (Vcmax ) and electron transport (Jmax ) without further change during subsequent hot, autumn-like conditions, whereas the quantum efficiency of carbon assimilation (qe) declined throughout the experiment. However, P. arundinacea had higher values of Aamb , Jmax , and qe than C. stricta. A general, the positive effect of increasing nitrogen availability occurred for photosynthetic processes for both species in hot conditions. CONCLUSIONS: Our data suggest that C. stricta is more susceptible to excessive light stress than P. arundinacea during hot, sunny periods, leading to leaf senescence. Field confirmation of this idea is needed, but frequent heat waves should favor P. arundinacea over C. stricta with or without eutrophication.

4.
J Plant Physiol ; 177: 20-29, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25659333

RESUMEN

Phalaris arundinacea displaces the slower-growing, native sedge, Carex stricta, where nitrogen availability is high. Our aim was to address whether morphological and physiological traits associated with carbon gain for P. arundinacea and C. stricta responded to nitrogen supply differently and if the species exhibited different degrees of plasticity in these traits. The plants were grown in gravel and provided modified Hoagland's solution containing four nitrogen concentrations from 0.15 to 15 mM for 6 to 7 weeks. Supplied nitrogen affected the leaf nitrogen content to the same degree for both species. Increasing supplied nitrogen strongly increased CO2 assimilation (A), photosynthetic nitrogen use efficiency (PNUE), and respiration for P. arundinacea but had only a small effect on these parameters for C. stricta. Relative to growth at 15 mM nitrogen, growth at 0.15 mM for young leaves decreased carboxylation capacity and efficiency and the capacity for electron transport for P. arundinacea and a larger, stouter Carex species, Carex lacustris, by 53 to 70% but only 20 to 24% for C. stricta. Leaf nitrogen decreased approximately 50% for all species, but vacuolar nitrate did not decrease for P. arundinacea and C. stricta, suggesting that it does not serve as a nitrogen reserve for use during nitrogen deprivation in these species. After 4 months of nitrogen deprivation, P. arundinacea doubled A in 12 days after being supplied 15 mM nitrogen, whereas A for C. stricta increased only 22%. We propose that one factor linking P. arundinacea abundance to nitrogen availability involves this species' plastic response of carbon gain to nitrogen supply. C. stricta appears to be adapted to tolerate low nitrogen availability but cannot respond as rapidly and extensively as P. arundinacea when nitrogen supply is high.


Asunto(s)
Dióxido de Carbono/metabolismo , Carex (Planta)/metabolismo , Nitrógeno/metabolismo , Phalaris/metabolismo , Fotosíntesis , Carex (Planta)/crecimiento & desarrollo , Especies Introducidas , Phalaris/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Humedales
5.
PeerJ ; 2: e477, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25083346

RESUMEN

In 2011, Big Bend National Park, Texas, USA, experienced the most severe single year drought in its recorded history, resulting in significant plant mortality. We used this event to test how perennial plant response to drought varied across elevation, plant growth form and leaf traits. In October 2010 and October 2011, we measured plant cover by species at six evenly-spaced elevations ranging from Chihuahuan desert (666 m) to oak forest in the Chisos mountains (1,920 m). We asked the following questions: what was the relationship between elevation and stem dieback and did susceptibility to drought differ among functional groups or by leaf traits? In 2010, pre-drought, we measured leaf mass per area (LMA) on each species. In 2011, the percent of canopy dieback for each individual was visually estimated. Living canopy cover decreased significantly after the drought of 2011 and dieback decreased with elevation. There was no relationship between LMA and dieback within elevations. The negative relationship between proportional dieback and elevation was consistent in shrub and succulent species, which were the most common growth forms across elevations, indicating that dieback was largely driven by elevation and not by species traits. Growth form turnover did not influence canopy dieback; differences in canopy cover and proportional dieback among elevations were driven primarily by differences in drought severity. These results indicate that the 2011 drought in Big Bend National Park had a large effect on communities at all elevations with average dieback for all woody plants ranging from 8% dieback at the highest elevation to 83% dieback at lowest elevations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA