Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 10(11)2021 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-34831171

RESUMEN

Ketogenic diets, used in epilepsy treatment, are considered to work through reduced glucose and ketone generation to regulate a range of cellular process including autophagy induction. Recent studies into the medium-chain triglyceride (MCT) ketogenic diet have suggested that medium-chain fatty acids (MCFAs) provided in the diet, decanoic acid and octanoic acid, cause specific therapeutic effects independent of glucose reduction, although a role in autophagy has not been investigated. Both autophagy and MCFAs have been widely studied in Dictyostelium, with findings providing important advances in the study of autophagy-related pathologies such as neurodegenerative diseases. Here, we utilize this model to analyze a role for MCFAs in regulating autophagy. We show that treatment with decanoic acid but not octanoic acid induces autophagosome formation and modulates autophagic flux in high glucose conditions. To investigate this effect, decanoic acid, but not octanoic acid, was found to induce the expression of autophagy-inducing proteins (Atg1 and Atg8), providing a mechanism for this effect. Finally, we demonstrate a range of related fatty acid derivatives with seizure control activity, 4BCCA, 4EOA, and Epilim (valproic acid), also function to induce autophagosome formation in this model. Thus, our data suggest that decanoic acid and related compounds may provide a less-restrictive therapeutic approach to activate autophagy.


Asunto(s)
Autofagia , Ácidos Decanoicos/farmacología , Dictyostelium/citología , Autofagosomas/efectos de los fármacos , Autofagosomas/metabolismo , Autofagia/efectos de los fármacos , Dictyostelium/efectos de los fármacos , Dictyostelium/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
2.
Nat Commun ; 12(1): 6025, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34654821

RESUMEN

A hexanucleotide repeat expansion GGGGCC in the non-coding region of C9orf72 is the most common cause of inherited amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Toxic dipeptide repeats (DPRs) are synthesized from GGGGCC via repeat-associated non-AUG (RAN) translation. Here, we develop C. elegans models that express, either ubiquitously or exclusively in neurons, 75 GGGGCC repeats flanked by intronic C9orf72 sequence. The worms generate DPRs (poly-glycine-alanine [poly-GA], poly-glycine-proline [poly-GP]) and poly-glycine-arginine [poly-GR]), display neurodegeneration, and exhibit locomotor and lifespan defects. Mutation of a non-canonical translation-initiating codon (CUG) upstream of the repeats selectively reduces poly-GA steady-state levels and ameliorates disease, suggesting poly-GA is pathogenic. Importantly, loss-of-function mutations in the eukaryotic translation initiation factor 2D (eif-2D/eIF2D) reduce poly-GA and poly-GP levels, and increase lifespan in both C. elegans models. Our in vitro studies in mammalian cells yield similar results. Here, we show a conserved role for eif-2D/eIF2D in DPR expression.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , Caenorhabditis elegans/genética , Demencia Frontotemporal/genética , Alanina , Animales , Arginina , Dipéptidos/metabolismo , Femenino , Edición Génica , Técnicas de Silenciamiento del Gen , Glicina , Células HEK293 , Humanos , Persona de Mediana Edad , Neuronas Motoras , Degeneración Nerviosa , Prolina
3.
Br J Pharmacol ; 178(5): 1149-1163, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33347604

RESUMEN

BACKGROUND AND PURPOSE: Cannabidiol (CBD) has been shown to differentially regulate the mechanistic target of rapamycin complex 1 (mTORC1) in preclinical models of disease, where it reduces activity in models of epilepsies and cancer and increases it in models of multiple sclerosis (MS) and psychosis. Here, we investigate the effects of phytocannabinoids on mTORC1 and define a molecular mechanism. EXPERIMENTAL APPROACH: A novel mechanism for phytocannabinoids was identified using the tractable model system, Dictyostelium discoideum. Using mouse embryonic fibroblasts, we further validate this new mechanism of action. We demonstrate clinical relevance using cells derived from healthy individuals and from people with MS (pwMS). KEY RESULTS: Both CBD and the more abundant cannabigerol (CBG) enhance mTORC1 activity in D. discoideum. We identify a mechanism for this effect involving inositol polyphosphate multikinase (IPMK), where elevated IPMK expression reverses the response to phytocannabinoids, decreasing mTORC1 activity upon treatment, providing new insight on phytocannabinoids' actions. We further validated this mechanism using mouse embryonic fibroblasts. Clinical relevance of this effect was shown in primary human peripheral blood mononuclear cells, where CBD and CBG treatment increased mTORC1 activity in cells derived from healthy individuals and decreased mTORC1 activity in cells derived from pwMS. CONCLUSION AND IMPLICATIONS: Our findings suggest that both CBD and the abundant CBG differentially regulate mTORC1 signalling through a mechanism dependent on the activity of the upstream IPMK signalling pathway, with potential relevance to the treatment of mTOR-related disorders, including MS.


Asunto(s)
Cannabinoides/farmacología , Diana Mecanicista del Complejo 1 de la Rapamicina , Fosfotransferasas (Aceptor de Grupo Alcohol) , Animales , Células Cultivadas , Fibroblastos , Leucocitos Mononucleares , Ratones
4.
Proc Natl Acad Sci U S A ; 117(38): 23617-23625, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32879008

RESUMEN

Low-glucose and -insulin conditions, associated with ketogenic diets, can reduce the activity of the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway, potentially leading to a range of positive medical and health-related effects. Here, we determined whether mTORC1 signaling is also a target for decanoic acid, a key component of the medium-chain triglyceride (MCT) ketogenic diet. Using a tractable model system, Dictyostelium, we show that decanoic acid can decrease mTORC1 activity, under conditions of constant glucose and in the absence of insulin, measured by phosphorylation of eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1). We determine that this effect of decanoic acid is dependent on a ubiquitin regulatory X domain-containing protein, mediating inhibition of a conserved Dictyostelium AAA ATPase, p97, a homolog of the human transitional endoplasmic reticulum ATPase (VCP/p97) protein. We then demonstrate that decanoic acid decreases mTORC1 activity in the absence of insulin and under high-glucose conditions in ex vivo rat hippocampus and in tuberous sclerosis complex (TSC) patient-derived astrocytes. Our data therefore indicate that dietary decanoic acid may provide a new therapeutic approach to down-regulate mTORC1 signaling.


Asunto(s)
Ácidos Decanoicos/farmacología , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Astrocitos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Dictyostelium/efectos de los fármacos , Dictyostelium/crecimiento & desarrollo , Dictyostelium/metabolismo , Epilepsia , Glucosa/metabolismo , Hipocampo/química , Hipocampo/metabolismo , Humanos , Insulina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/farmacología , Factores de Iniciación de Péptidos , Fosforilación , Ratas
5.
Biochem Biophys Rep ; 22: 100751, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32258439

RESUMEN

Visualizing mitochondria in living Dictyostelium discoideum cells using fluorescent dyes is often problematic due to variability in staining, metabolism of the dyes, and unknown potential effects of the dyes on mitochondrial function. We show that fluorescent labelling of mitochondria, using an N-terminal mitochondrial localization sequence derived from the D. discoideum protein GcvH1 (glycine cleavage system H1) attached to a red fluorescent protein enables clear mitochondrial imaging. We also show that this labelling has no effect upon mitochondria load or respiratory function.

6.
Br J Pharmacol ; 177(4): 912-928, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31693171

RESUMEN

BACKGROUND AND PURPOSE: Epidiolex™, a form of highly purified cannabidiol (CBD) derived from Cannabis plants, has demonstrated seizure control activity in patients with Dravet syndrome, without a fully elucidated mechanism of action. We have employed an unbiased approach to investigate this mechanism at a cellular level. EXPERIMENTAL APPROACH: We use a tractable biomedical model organism, Dictyostelium, to identify a protein controlling the effect of CBD and characterize this mechanism. We then translate these results to a Dravet syndrome mouse model and an acute in vitro seizure model. KEY RESULTS: CBD activity is partially dependent upon the mitochondrial glycine cleavage system component, GcvH1 in Dictyostelium, orthologous to the human glycine cleavage system component H protein, which is functionally linked to folate one-carbon metabolism (FOCM). Analysis of FOCM components identified a mechanism for CBD in directly inhibiting methionine synthesis. Analysis of brain tissue from a Dravet syndrome mouse model also showed drastically altered levels of one-carbon components including methionine, and an in vitro rat seizure model showed an elevated level of methionine that is attenuated following CBD treatment. CONCLUSIONS AND IMPLICATIONS: Our results suggest a novel mechanism for CBD in the regulating methionine levels and identify altered one-carbon metabolism in Dravet syndrome and seizure activity.


Asunto(s)
Cannabidiol , Dictyostelium , Epilepsia , Síndrome de Lennox-Gastaut , Animales , Anticonvulsivantes/uso terapéutico , Cannabidiol/uso terapéutico , Ciclo del Carbono , Epilepsia/tratamiento farmacológico , Humanos , Síndrome de Lennox-Gastaut/tratamiento farmacológico , Metionina/uso terapéutico , Ratas
7.
Autophagy ; 15(8): 1407-1418, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30806144

RESUMEN

Mutations in the γ-secretase complex are strongly associated with familial Alzheimer disease. Both proteolytic and non-proteolytic functions for the γ-secretase complex have been previously described in mammalian model organisms, but their relative contributions to disease pathology remain unclear. Here, we dissect the roles of orthologs of the γ-secretase components in the model system Dictyostelium, focusing on endocytosis, lysosomal activity and autophagy. In this model, we show that the orthologs of PSEN (psenA and psenB), Ncstn (nicastrin) and Aph-1 (gamma-secretase subunit Aph-1), are necessary for optimal fluid-phase uptake by macropinocytosis and in multicellular development under basic pH conditions. Disruption of either psenA/B or Aph-1 proteins also leads to disrupted phagosomal proteolysis as well as decreased autophagosomal acidification and autophagic flux. This indicates a general defect in lysosomal trafficking and degradation, which we show leads to the accumulation of ubiquitinated protein aggregates in cells lacking psenA/B and Aph-1 proteins. Importantly, we find that all the endocytic defects observed in Dictyostelium PSEN ortholog mutants can be fully rescued by proteolytically inactive Dictyostelium psenB and human PSEN1 proteins. Our data therefore demonstrates an evolutionarily conserved non-proteolytic role for presenilin, and γ-secretase component orthologs, in maintaining Dictyostelium lysosomal trafficking and autophagy. Abbreviations: Atg8: autophagy protein 8a; Aph-1: gamma-secretase subunit Aph-1; crtA: calreticulin; ER: endoplasmic reticulum; GFP: green fluorescent protein; GSK3B: glycogen synthase kinase 3 beta; Ncstn: nicastrin; PSEN1: presenilin 1; psenA and psenB: Dictyostelium presenilin A and B; TRITC; tetramethylrhodamine isothiocyanate.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Autofagia , Dictyostelium/metabolismo , Lisosomas/metabolismo , Presenilinas/metabolismo , Proteolisis , Homología de Secuencia de Aminoácido , Endocitosis , Proteínas Fluorescentes Verdes/metabolismo , Concentración de Iones de Hidrógeno , Mutación/genética , Ubiquitina/metabolismo , Ubiquitinación
8.
Front Cell Neurosci ; 12: 199, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30050411

RESUMEN

Since the original report of seizure control through starvation in the 1920s, the ketogenic diet has been considered an energy-related therapy. The diet was assumed to be functioning through the effect of reduced carbohydrate intake regulating cellular energy state, thus giving rise to seizure control. From this assumption, the generation of ketones during starvation provided an attractive mechanism for this altered energy state; however, many years of research has sought and largely failed to correlate seizure control and ketone levels. Due to this focus on ketones, few studies have examined a role for free fatty acids, as metabolic intermediates between the triglycerides provided in the diet and ketones, in seizure control. Recent discoveries have now suggested that the medium-chain fats, delivered through the medium-chain triglyceride (MCT) ketogenic diet, may provide a key therapeutic mechanism of the diet in seizure control. Here we describe an unusual pathway leading to this discovery, beginning with the use of a tractable non-animal model-Dictyostelium, through to the demonstration that medium-chain fats play a direct role in seizure control, and finally the identification of a mechanism of action of these fats and related congeners leading to reduced neural excitability and seizure control.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...