Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 281: 111882, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33421937

RESUMEN

Three of the primary functions of green roofs in urban areas are to delay rainwater runoff, moderate building temperatures, and ameliorate the urban heat island (UHI) effect. A major impediment to the survival of plants on an unirrigated extensive green roof (EGR) is the harsh rooftop environment, including high temperatures and limited water during dry periods. Factors that influence EGR thermal and hydrologic performance include the albedo (reflectivity) of the roof and the composition of the green roof substrate (growing media). In this study we used white, reflective shading structures and three different media formulations to evaluate EGR thermal and hydrologic performance in the Pacific Northwest, USA. Shading significantly reduced daytime mean and maximum EGR media temperatures and significantly increased nighttime mean and minimum temperatures, which may provide energy benefits to buildings. Mean media moisture was greater in shaded trays than in exposed (unshaded) trays but differences were not statistically significant. Warmer nighttime media temperatures and lack of dew formation in shaded trays may have partially compensated for greater daytime evaporation from exposed trays. Media composition did not significantly influence media temperature or moisture. Results of this study suggest that adding shade structures to green roofs will combine thermal, hydrologic, and ecological benefits, and help achieve temperature and light regimes that allow for greater plant diversity on EGRs.


Asunto(s)
Conservación de los Recursos Naturales , Calor , Ciudades , Noroeste de Estados Unidos , Temperatura
2.
J Plant Sci Phytopathol ; 5(3): 76-87, 2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-35156005

RESUMEN

The fungal pathogen, Nothophaeocryptopus gaeumannii, occurs wherever Douglas-fir is found but disease damage is believed to be limited to the Coast Range and is of no concern outside the coastal fog zone (Shaw, et al., 2011). However, knowledge remains limited on the history and spatial distribution of Swiss Needle Cast (SNC) impacts in the Pacific Northwest (PNW). We reconstructed the history of SNC impacts on mature Douglas-fir trees based on tree ringwidth chronologies from the west slope of the Coast Range to the high Cascades of Oregon. Our findings show that SNC impacts on growth occur wherever Douglas-fir is found in western Oregon and is not limited to the coastal fog zone. The spatiotemporal patterns of growth impact from SNC disease were synchronous across the region, displayed periodicities of 25-30 years, strongly correlated with winter and summer temperatures and summer precipitation, and matched the patterns of enriched cellulosic stable carbon isotope indicative of physiological stress. While winter and summer temperature and summer precipitation influenced pathogen dynamics at all sites, the primary climatic factor of these three limiting factors varied spatially by location, topography, and elevation. In the 20th century, SNC impacts at low- to mid-elevations were least severe during the warm phase of the Pacific Decadal Oscillation (PDO, 1924-1945) and most severe in 1984-1986, following the cool phase of the PDO (1945-1977). At high elevations on the west slope of the Cascade Mountains, SNC impacts were the greatest in the 1990s and 2000s, a period of warmer winter temperatures associated with climate change. Warmer winters will likely continue to increase SNC severity at higher elevations, north along the coast from northern Oregon to British Columbia, and inland where low winter temperatures currently limit growth of the pathogen. Surprisingly, tree-ring records of ancient Douglas-fir logs dated ~53K radioactive years B.P. from Eddyville, OR displayed 7.5- and 20-year periodicities of low growth, similar to those found in modern day coastal Douglas-fir tree-ring records which we interpret as being due to cyclic fluctuations in SNC severity. Our findings indicate that SNC has persisted for as long as its host, and as a result of changing climate, may become a significant forest health problem in areas of the PNW beyond the coastal fog zone.

3.
For Ecol Manage ; 442: 79-95, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31105377

RESUMEN

Swiss needle cast (SNC), caused by Nothophaeocryptopus gaeumannii, is an important foliage disease of Douglas-fir (Pseudotsuga menziesii) forests of the Pacific Northwest. The fungus lives endophytically within the foliage, until forming reproductive structures (pseudothecia) that plug stomates and cause carbon starvation. When pseudothecia appear on one- and two-year-old foliage, significant needle abscission can occur, which reduces productivity of the tree. While there is considerable evidence of SNC disease in coastal Douglas-fir plantations, the severity of SNC in mature and old-growth forests is poorly understood. We compared tree crowns of mature and old-growth conifer forests and nearby young forests at three locations in the Oregon Coast Range and four locations in the western Cascade Range of Oregon. We assessed disease severity for N. gaeumannii on two-year-old foliage, incidence by presence of N. gaeumannii on all foliage, foliage retention for the first four years, and foliar nitrogen of one-year-old foliage. We also compared leaf wetness at three heights in one mature and one young tree at five of the seven sites. Disease severity was greater in young forests than mature forests at all sites except for high elevation Cascade Range areas. Incidence of disease was highest for two-year-old needles in young trees and 3-5 year-old needles in mature trees, except for one coastal site. Retention of 1-4 year-old needle cohorts differed between young and mature trees, and mature trees had much larger complements of > four-year-old needles. Total foliar nitrogen (TN) concentration did not differ in needles of young and mature trees, but at some locations total N differed between canopy positions. Leaf wetness differences were not consistent between young and mature tree crowns. However, at one study site in the core epidemic area, the younger stand had longer periods of wetness in the upper crowns than a nearby old stand. Leaf wetness and foliar N were hypothesized to play a role in SNC disease severity, but they do not explain differences in adjacent young and mature trees. Although the fungus is present in old and young trees, the likelihood of disease expression and lower foliage retention appears to be greater in younger plantation trees than mature and older trees in western Oregon Douglas-fir forests.

4.
Water (Basel) ; 10(10): 1398, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30505572

RESUMEN

Modeling the spatial and temporal dynamics of soil temperature is deterministically complex due to the wide variability of several influential environmental variables, including soil column composition, soil moisture, air temperature, and solar energy. Landscape incident solar radiation is a significant environmental driver that affects both air temperature and ground-level soil energy loading; therefore, inclusion of solar energy is important for generating accurate representations of soil temperature. We used the U.S. Environmental Protection Agency's Oregon Crest-to-Coast (O'CCMoN) Environmental Monitoring Transect dataset to develop and test the inclusion of ground-level solar energy driver data within an existing soil temperature model currently utilized within an ecohydrology model called Visualizing Ecosystem Land Management Assessments (VELMA). The O'CCMoN site data elucidate how localized ground-level solar energy between open and forested landscapes greatly influence the resulting soil temperature. We demonstrate how the inclusion of local ground-level solar energy significantly improves the ability to deterministically model soil temperature at two depths. These results suggest that landscape and watershed-scale models should incorporate spatially distributed solar energy to improve spatial and temporal simulations of soil temperature.

5.
Agric For Meteorol ; 242: 109-119, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-30008496

RESUMEN

Large conifer trees in the Pacific Northwest, USA (PNW) use stored water to extend photosynthesis, both diurnally and seasonally. This is particularly important during the summer drought, which is characteristic of the region. In the PNW, climate change is predicted to result in hotter, drier summers and warmer, wetter winters with decreased snowpack by mid-century. Understanding seasonal bole water dynamics in relation to climate factors will enhance our ability to determine the vulnerability of forests to climate change. Seasonal patterns of bole water content in old-growth Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees were studied in the Cascade Mountains of western Oregon, USA. Relative water content (RWC) was monitored hourly in three 400+ and three ~150 years-old trees using permanently mounted dielectric devices for 10 years. RWC increased during the late spring and early summer to maximum levels in August then decreased into fall and remained low over winter. The difference between minimum RWC in the winter and maximum in mid-summer averaged 4.5 and 2.3% for the older and younger trees, respectively, across all years. RWC closely followed growth and was positively correlated with air and soil temperature, vapor pressure deficit and photosynthetically active radiation, but lagged plant available soil water. The progressive decrease in RWC seen each year from mid-summer through fall was attributed to net daily loss of water during the summer drought. The marked increase in RWC observed from spring to mid-summer each year was hypothesized to be the period of embolism repair and water recharge in elastic tissues. We conclude that bole water content is an integral part of tree water dynamics enabling trees to extend carbon assimilation into drought periods and during periods when cold soil inhibits water uptake by roots, an adaptation that could benefit the survival of large PNW trees under climate change.

6.
Dendrochronologia (Verona) ; 45: 132-144, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29479167

RESUMEN

A time series intervention analysis (TSIA) of dendrochronological data to infer the tree growth-climate-disturbance relations and forest disturbance history is described. Maximum likelihood is used to estimate the parameters of a structural time series model with components for climate and forest disturbances (i.e., pests, diseases, fire). The statistical method is illustrated with a tree-ring width time series for a mature closed-canopy Douglas-fir stand on the west slopes of the Cascade Mountains of Oregon, USA that is impacted by Swiss needle cast disease caused by the foliar fungus, Phaecryptopus gaeumannii (Rhode) Petrak. The likelihood-based TSIA method is proposed for the field of dendrochronology to understand the interaction of temperature, water, and forest disturbances that are important in forest ecology and climate change studies.

7.
Ecol Evol ; 7(24): 11167-11196, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29299291

RESUMEN

The fungal pathogen, Phaeocryptopus gaeumannii, causing Swiss needle cast (SNC) occurs wherever Douglas-fir is found but disease damage is believed to be limited in the U.S. Pacific Northwest (PNW) to the Coast Range of Oregon and Washington (Hansen et al., Plant Disease, 2000, 84, 773; Rosso & Hansen, Phytopathology, 2003, 93, 790; Shaw, et al., Journal of Forestry, 2011, 109, 109). However, knowledge remains limited on the history and spatial distribution of SNC impacts in the PNW. We reconstructed the history of SNC impacts on mature Douglas-fir trees based on tree-ring width chronologies from western Oregon. Our findings show that SNC impacts on growth occur wherever Douglas-fir is found and is not limited to the coastal fog zone. The spatiotemporal patterns of growth impact from SNC disease were synchronous across the region, displayed periodicities of 12-40 years, and strongly correlated with winter and summer temperatures and summer precipitation. The primary climatic factor limiting pathogen dynamics varied spatially by location, topography, and elevation. SNC impacts were least severe in the first half of the 20th century when climatic conditions during the warm phase of the Pacific Decadal Oscillation (1924-1945) were less conducive to pathogen development. At low- to mid-elevations, SNC impacts were most severe in 1984-1986 following several decades of warmer winters and cooler, wetter summers including a high summer precipitation anomaly in 1983. At high elevations on the west slope of the Cascade Range, SNC impacts peaked several years later and were the greatest in the 1990s, a period of warmer winter temperatures. Climate change is predicted to result in warmer winters and will likely continue to increase SNC severity at higher elevations, north along the coast from northern Oregon to British Columbia, and inland where low winter temperatures currently limit growth of the pathogen. Our findings indicate that SNC may become a significant forest health problem in areas of the PNW beyond the coastal fog zone.

8.
Ecol Appl ; 21(2): 525-38, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21563582

RESUMEN

We constructed a mixed-species community designed to simulate roadside and field edge plant communities and exposed it to glyphosate drift in order to test three hypotheses: (1) higher fitness in transgenic Brassica carrying the CP4 EPSPS transgene that confers resistance to glyphosate will result in significant changes in the plant community relative to control communities; (2) given repeated years of glyphosate drift selective pressure, the increased fitness of the transgenic Brassica with CP4 EPSPS will contribute to an increase in the proportion of transgenic progeny produced in plant communities; and (3) the increased fitness of Brassica carrying the CP4 EPSPS transgene will contribute to decreased levels of mycorrhizal infection and biomass in a host species (Trifolium incarnatum). Due to regulatory constraints that prevented the use of outdoor plots for our studies, in 2005 we established multispecies communities in five large cylindrical outdoor sunlit mesocosms (plastic greenhouses) designed for pollen confinement. Three of the community members were sexually compatible Brassica spp.: transgenic glyphosate-resistant canola (B. napus) cultivar (cv.) RaideRR, glyphosate-sensitive non-transgenic B. napus cv. Sponsor, and a weedy B. rapa (GRIN Accession 21735). Additional plant community members were the broadly distributed annual weeds Digitaria sanguinalis, Panicum capillare, and Lapsana communis. Once annually in 2006 and 2007, two mesocosms were sprayed with glyphosate at 10% of the field application rate to simulate glyphosate drift as a selective pressure. After two years, changes were observed in community composition, plant density, and biomass in both control and treatment mesocosms. In control mesocosms, the weed D. sanguinalis (crabgrass) began to dominate. In glyphosate drift-treated mesocosms, Brassica remained the dominant genus and the incidence of the CP4 EPSPS transgene increased in the community. Shoot biomass and mycorrhizal infection in Trifolium incarnatum planted in 2008 were significantly lower in mesocosms that had received glyphosate drift treatments. Our results suggest that, over time, glyphosate drift can contribute to persistence of Brassica that express the CP4 EPSPS transgene and that increased representation of Brassica (a non-mycorrhizal host) within plant communities may indirectly negatively impact beneficial ecosystem services associated with arbuscular mycorrhiza.


Asunto(s)
Biodiversidad , Brassica/efectos de los fármacos , Brassica/genética , Glicina/análogos & derivados , Herbicidas/farmacología , Regulación de la Expresión Génica de las Plantas/fisiología , Glicina/farmacología , Resistencia a los Herbicidas/genética , Micorrizas , Plantas Modificadas Genéticamente , Microbiología del Suelo , Glifosato
9.
Tree Physiol ; 29(11): 1381-93, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19748912

RESUMEN

Evapotranspiration (ET) is driven by evaporative demand, available solar energy and soil moisture (SM) as well as by plant physiological activity which may be substantially affected by elevated CO2 and O3. A multi-year study was conducted in outdoor sunlit-controlled environment mesocosm containing ponderosa pine seedlings growing in a reconstructed soil-litter system. The study used a 2 x 2 factorial design with two concentrations of CO2 (ambient and elevated), two levels of O3 (low and high) and three replicates of each treatment. The objective of this study was to assess the effects of chronic exposure to elevated CO2 and O3, alone and in combination, on daily ET. This study evaluated three hypotheses: (i) because elevated CO2 stimulates stomatal closure, O3 effects on ET will be less under elevated CO2 than under ambient CO2; (ii) elevated CO2 will ameliorate the long-term effects of O3 on ET; and (iii) because conductance (g) decreases with decreasing SM, the impacts of elevated CO2 and O3, alone and in combination, on water loss via g will be greater in early summer when SM is not limiting than to other times of the year. A mixed-model covariance analysis was used to adjust the daily ET for seasonality and the effects of SM and photosynthetically active radiation when testing for the effects of CO2 and O3 on ET via the vapor pressure deficit gradient. The empirical results indicated that the interactive stresses of elevated CO2 and O3 resulted in a lesser reduction in ET via reduced canopy conductance than the sum of the individual effects of each gas. CO2-induced reductions in ET were more pronounced when trees were physiologically most active. O3-induced reductions in ET under ambient CO2 were likely transpirational changes via reduced conductance because needle area and root biomass were not affected by exposures to elevated O3 in this study.


Asunto(s)
Pinus ponderosa/efectos de los fármacos , Estaciones del Año , Suelo , Agua/metabolismo , Transporte Biológico/efectos de los fármacos , Clima , Pinus ponderosa/metabolismo , Pinus ponderosa/fisiología , Transpiración de Plantas
10.
Plant Cell Environ ; 30(11): 1400-10, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17897410

RESUMEN

We investigated the effects of elevated CO(2) (EC) [ambient CO(2) (AC) + 190 ppm] and elevated temperature (ET) [ambient temperature (AT) + 3.6 degrees C] on net ecosystem exchange (NEE) of seedling Douglas fir (Pseudotsuga menziesii) mesocosms. As the study utilized seedlings in reconstructed soil-litter-plant systems, we anticipated greater C losses through ecosystem respiration (R(e)) than gains through gross photosynthesis (GPP), i.e. negative NEE. We hypothesized that: (1) EC would increase GPP more than R(e), resulting in NEE being less negative; and (2) ET would increase R(e) more than GPP, resulting in NEE being more negative. We also evaluated effects of CO(2) and temperature on light inhibition of dark respiration. Consistent with our hypothesis, NEE was a smaller C source in EC, not because EC increased photosynthesis but rather because of decreased respiration resulting in less C loss. Consistent with our hypothesis, NEE was more negative in ET because R(e) increased more than GPP. The light level that inhibited respiration varied seasonally with little difference among CO(2) and temperature treatments. In contrast, the degree of light inhibition of respiration was greater in AC than EC. In our system, respiration was the primary control on NEE, as EC and ET caused greater changes in respiration than photosynthesis.


Asunto(s)
Dióxido de Carbono/metabolismo , Carbono/metabolismo , Ecosistema , Calor , Pseudotsuga/metabolismo , Dióxido de Carbono/química , Consumo de Oxígeno , Transpiración de Plantas , Plantones , Factores de Tiempo
11.
Tree Physiol ; 27(5): 737-47, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17267364

RESUMEN

Purportedly, large Douglas-fir trees in the American Pacific Northwest use water stored in bole tissues to ameliorate the effects of seasonal summer drought, the water content of bole tissues being drawn down over the summer months and replenished during the winter. Continuous monitoring of bole relative water content (RWC) in two 110-120-year-old Douglas-fir trees with ThetaProbe impedance devices provided an integrated measure of phloem-sapwood water content over 4 years. Seasonal changes in RWC closely tracked cambial activity and wood formation, but lagged changes in soil water content by 2-3 months. The RWC in the combined phloem and sapwood markedly increased during earlywood production in the late spring and early summer to maximum values of 64-77% as plant available soil water (ASW) decreased by approximately 60%. With transition and latewood formation, RWC decreased to minimum values of 59-72%, even as ASW increased in the fall. The difference between minimum RWC in the fall and maximum RWC in midsummer was only approximately 5%. Seasonal changes in bole RWC corresponded to cambial phenology, although decreasing AWS appeared to trigger the shift from earlywood to latewood formation.


Asunto(s)
Pseudotsuga/metabolismo , Estaciones del Año , Suelo , Árboles/metabolismo , Agua/metabolismo , Floema/metabolismo , Pseudotsuga/crecimiento & desarrollo , Árboles/crecimiento & desarrollo , Madera/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...