Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Strahlenther Onkol ; 200(1): 39-48, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37591978

RESUMEN

PURPOSE: The geometric distortion related to magnetic resonance (MR) imaging in a diagnostic radiology (MRDR) and radiotherapy (MRRT) setup is evaluated, and the dosimetric impact of MR distortion on fractionated stereotactic radiotherapy (FSRT) in patients with brain metastases is simulated. MATERIALS AND METHODS: An anthropomorphic skull phantom was scanned using a 1.5­T MR scanner, and the magnitude of MR distortion was calculated with (MRDR-DC and MRRT-DC) and without (MRDR-nDC and MRRT-nDC) distortion-correction algorithms. Automated noncoplanar volumetric modulated arc therapy (HyperArc, HA; Varian Medical Systems, Palo Alto, CA, USA) plans were generated for 53 patients with 186 brain metastases. The MR distortion at each gross tumor volume (GTV) was calculated using the distance between the center of the GTV and the MR image isocenter (MIC) and the quadratic regression curve derived from the phantom study (MRRT-DC and MRRT-nDC). Subsequently, the radiation isocenter of the HA plans was shifted according to the MR distortion at each GTV (HADC and HAnDC). RESULTS: The median MR distortions were approximately 0.1 mm when the distance from the MIC was < 30 mm, whereas the median distortion varied widely when the distance was > 60 mm (0.23, 0.47, 0.37, and 0.57 mm in MRDR-DC, MRDR-nDC, MRRT-DC, and MRRT-nDC, respectively). The dose to the 98% of the GTV volume (D98%) decreased as the distance from the MIC increased. In the HADC plans, the relative dose difference of D98% was less than 5% when the GTV was located within 70 mm from the MIC, whereas the underdose of GTV exceeded 5% when it was 48 mm (-26.5% at maximum) away from the MIC in the HAnDC plans. CONCLUSION: Use of a distortion-correction algorithm in the studied MR diagnoses is essential, and the dosimetric impact of MR distortion is not negligible, particularly for tumors located far away from the MIC.


Asunto(s)
Neoplasias Encefálicas , Radiocirugia , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Radiocirugia/métodos , Algoritmos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundario , Imagen por Resonancia Magnética/métodos , Dosificación Radioterapéutica
2.
Anticancer Res ; 43(7): 3079-3087, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37351970

RESUMEN

BACKGROUND/AIM: Angiosarcoma of the scalp (AS) is a rare tumor that has often been treated by total scalp irradiation (TSI). TSI has technical and dosimetric challenges. This study aimed to compare the dosimetric performance of helical tomotherapy (HT) plans with that of HyperArc (HA) plans for TSI in AS. PATIENTS AND METHODS: A planning study was conducted for 11 patients with AS (70 Gy/35 fr). HT and HA planning was performed using TomoHDA and TrueBeam Edge systems, respectively. The performance of three different plans were compared: HT, HA, and HA with half-field beams (HF-HA). The dose distribution and dosimetric parameters for each plan were evaluated. RESULTS: All constraint parameters for the target and organs at risk (OARs) met the goals within acceptable limits for the three techniques. The HA and HF-HA plans provided significantly lower mean brain dose (12.46±2.48 Gy and 8.02±1.48 Gy) than did the HT plan (17.59±3.47 Gy). The doses receiving 0.1 cc of the volume for brainstem and chiasm were significantly lower in the HA and HF-HA plans than those in the HT plan. The HA and HF-HA plans provided a shorter beam-on time (155±3 s and 181±14 s) than did the HT plan (962±221 s). CONCLUSION: The HA plan provided significantly better OARs sparing than the HT plan for TSI in AS and had an advantage to using half-field beams.


Asunto(s)
Hemangiosarcoma , Radioterapia de Intensidad Modulada , Humanos , Radioterapia de Intensidad Modulada/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Dosificación Radioterapéutica , Cuero Cabelludo , Hemangiosarcoma/radioterapia , Órganos en Riesgo/efectos de la radiación
3.
Rep Pract Oncol Radiother ; 27(5): 809-820, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36523803

RESUMEN

Background: We evaluated the setup error and dose absorption of an immobilization system with a shell and wooden baseplate (SW) for lung stereotactic body radiotherapy (SBRT). Materials and methods: Setup errors in 109 patients immobilized with an SW or BodyFix system (BF) were compared. Dose attenuation rates of materials for baseplates were measured with an ion-chamber. Ionization measurements were performed from 90° to 180° gantry angle in 10° increments, with the ball water equivalent phantom placed at the center of the wood and carbon baseplates whose effects on dose distribution were compared using an electron portal imaging device. Results: The ratio for the anterior-posterior, cranial-caudal, and right-left of the cases within 3-mm registered shifts in interfractional setup error were 90.9%, 89.2%, and 97.4% for the SW, and 93.2%, 91.6%, and 98.0% for the BF, respectively. For intrafractional setup error, 98.3%, 97.4%, and 99.1% for the SW and 96.6%, 95.8%, and 98.7% for the BF were within 3-mm registered shifts, respectively. In the center position, the average (minimum/maximum) dose attenuation rates from 90° to 180° for the wooden and carbon baseplates were 0.5 (0.1/2.8)% and 1.0 (-0.1/10.1)% with 6 MV, respectively. The gamma passing rates of 2%/2 mm for the wooden and carbon baseplates were 99.7% and 98.3% (p < 0.01). Conclusions: The immobilization system with an SW is effective for lung SBRT since it is comparable to the BF in setup accuracy. Moreover, the wooden baseplate had lower radiation attenuation rates and affected the dose distribution less than the carbon baseplate.

4.
Technol Cancer Res Treat ; 21: 15330338211067312, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34981989

RESUMEN

Introduction: Several studies have reported the relation between the imaging dose and secondary cancer risk and have emphasized the need to minimize the additional imaging dose as low as reasonably achievable. The iterative cone-beam computed tomography (iCBCT) algorithm can improve the image quality by utilizing scatter correction and statistical reconstruction. We investigate the use of a novel iCBCT reconstruction algorithm to reduce the patient dose while maintaining low-contrast detectability and registration accuracy. Methods: Catphan and anthropomorphic phantoms were analyzed. All CBCT images were acquired with varying dose levels and reconstructed with a Feldkamp-Davis-Kress algorithm-based CBCT (FDK-CBCT) and iCBCT. The low-contrast detectability was subjectively assessed using a 9-point scale by 4 reviewers and objectively assessed using structure similarity index (SSIM). The soft tissue-based registration error was analyzed for each dose level and reconstruction technique. Results: The results of subjective low-contrast detectability found that the iCBCT acquired at two-thirds of a dose was superior to the FDK-CBCT acquired at a full dose (6.4 vs 5.4). Relative to FDK-CBCT acquired at full dose, SSIM was higher for iCBCT acquired at one-sixth dose in head and head and neck region while equivalent with iCBCT acquired at two-thirds dose in pelvis region. The soft tissue-based registration was 2.2 and 0.6 mm for FDK-CBCT and iCBCT, respectively. Conclusion: Use of iCBCT reconstruction algorithm can generally reduce the patient dose by approximately two-thirds compared to conventional reconstruction methods while maintaining low-contrast detectability and accuracy of registration.


Asunto(s)
Tomografía Computarizada de Haz Cónico/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Guiada por Imagen/métodos , Antropometría , Biomarcadores , Medios de Contraste , Humanos , Pelvis/diagnóstico por imagen , Fantasmas de Imagen , Radioterapia Guiada por Imagen/normas , Relación Señal-Ruido
5.
Phys Med ; 92: 24-31, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34837857

RESUMEN

PURPOSE: To evaluate the utility of the use of iterative cone-beam computed tomography (CBCT) for machine log file-based dose verification during volumetric modulated arc therapy (VMAT) for prostate cancer patients. METHODS: All CBCT acquisition data were used to reconstruct images with the Feldkamp-Davis-Kress algorithm (FDK-CBCT) and the novel iterative algorithm (iCBCT). The Hounsfield unit (HU)-electron density curves for CBCT images were created using the Advanced Electron Density Phantom. The I'mRT and anthropomorphic phantoms were irradiated with VMAT after CBCT registration. Subsequently, fourteen prostate cancer patients received VMAT after CBCT registration. Machine log files and both CBCT images were exported to the PerFRACTION software, and a 3D patient dose was reconstructed. Mean dose for planning target volume (PTV), the bladder, and rectum and the 3D gamma analysis were evaluated. RESULTS: For the phantom studies, the variation of HU values was observed at the central position surrounding the bones in FDK-CBCT. There were almost no changes in the difference of doses at the isocenter between measurement and reconstructed dose for planning CT (pCT), FDK-CBCT, and iCBCT. Mean dose differences of PTV, rectum, and bladder between iCBCT and pCT were approximately 2% lower than those between FDK-CBCT and pCT. For the clinical study, average gamma analysis for 2%/2 mm was 98.22% ± 1.07 and 98.81% ± 1.25% in FDK-CBCT and iCBCT, respectively. CONCLUSIONS: A similar machine log file-based dose verification accuracy is obtained for FDK-CBCT and iCBCT during VMAT for prostate cancer patients.

6.
Anticancer Res ; 41(6): 3153-3159, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34083310

RESUMEN

BACKGROUND/AIM: To assess the impact of the width of multileaf collimator (MLC) on dose distributions on HyperArc fractionated stereotactic irradiation for multiple (5-10) brain metastases. PATIENTS AND METHODS: Twenty-one HyperArc (HA) plans were generated using the high definition (HD) MLC (2.5 mm) to deliver 30-35 Gy in 3-5 fractions (HA-HD). The HyperArc plans using Millennium (ML) MLC (5 mm) were retrospectively generated (HA-ML) using the same planning parameters with HA-HD. Dosimetric parameters between the planning target volume (PTV) and organs at risk (OARs) were compared. RESULTS: The conformity index was significantly higher (p<0.0001) in the HA-HD plans (0.95±0.04) than that in the HA-ML plans (0.92±0.06). The HA-HD provided significantly lower (p<0.0001) gradient index (5.6±2.5) than HA-ML (6.2±3.5). For the brainstem and retina (right), a statistically significant difference (p<0.05) was observed between the HA-HD (12.8±10.9 and 2.8±1.7 Gy, for brainstem and retina, respectively) and HA-ML (13.6±11.1 and 3.0±1.8 Gy) plans. For the brain tissue, the HA-HD plans statistically significantly reduced dosimetric parameters (p<0.0001) in all evaluated dose range (V6Gy-V28Gy). CONCLUSION: The narrower MLC provided significantly higher conformity, steeper dose gradient, and better normal tissue sparing.


Asunto(s)
Neoplasias Encefálicas/radioterapia , Metástasis de la Neoplasia/radioterapia , Radiocirugia , Humanos , Planificación de la Radioterapia Asistida por Computador
7.
Phys Med ; 86: 106-112, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34102546

RESUMEN

PURPOSE: To evaluate the feasibility of the use of iterative cone-beam computed tomography (CBCT) for dose calculation in the head and neck region. METHODS: This study includes phantom and clinical studies. All acquired CBCT images were reconstructed with Feldkamp-Davis-Kress algorithm-based CBCT (FDK-CBCT) and iterative CBCT (iCBCT) algorithm. The Hounsfield unit (HU) consistency between the head and body phantoms was determined in both reconstruction techniques. Volumetric modulated arc therapy (VMAT) plans were generated for 16 head and neck patients on a planning CT scan, and the doses were recalculated on FDK-CBCT and iCBCT with Anisotropic Analytical Algorithm (AAA) and Acuros XB (AXB). As a comparison of the accuracy of dose calculations, the absolute dosimetric difference and 1%/1 mm gamma passing rate analysis were analyzed. RESULTS: The difference in the mean HU values between the head and body phantoms was larger for FDK-CBCT (max value: 449.1 HU) than iCBCT (260.0 HU). The median dosimetric difference from the planning CT were <1.0% for both FDK-CBCT and iCBCT but smaller differences were found with iCBCT (planning target volume D50%: 0.38% (0.15-0.59%) for FDK-CBCT, 0.28% (0.13-0.49%) for iCBCT, AAA; 0.14% (0.04-0.19%) for FDK-CBCT, 0.07% (0.02-0.20%) for iCBCT). The mean gamma passing rate was significantly better in iCBCT than FDK-CBCT (AAA: 98.7% for FDK-CBCT, 99.4% for iCBCT; AXB: 96.8% for FDK_CBCT, 97.5% for iCBCT). CONCLUSION: The iCBCT-based dose calculation in VMAT for head and neck cancer was accurate compared to FDK-CBCT.


Asunto(s)
Radioterapia de Intensidad Modulada , Tomografía Computarizada de Haz Cónico Espiral , Algoritmos , Tomografía Computarizada de Haz Cónico , Humanos , Fantasmas de Imagen , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
8.
Phys Med ; 85: 8-14, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33940528

RESUMEN

PURPOSE: To construct a deep convolutional neural network that generates virtual monochromatic images (VMIs) from single-energy computed tomography (SECT) images for improved pancreatic cancer imaging quality. MATERIALS AND METHODS: Fifty patients with pancreatic cancer underwent a dual-energy CT simulation and VMIs at 77 and 60 keV were reconstructed. A 2D deep densely connected convolutional neural network was modeled to learn the relationship between the VMIs at 77 (input) and 60 keV (ground-truth). Subsequently, VMIs were generated for 20 patients from SECT images using the trained deep learning model. RESULTS: The contrast-to-noise ratio was significantly improved (p < 0.001) in the generated VMIs (4.1 ± 1.8) compared to the SECT images (2.8 ± 1.1). The mean overall image quality (4.1 ± 0.6) and tumor enhancement (3.6 ± 0.6) in the generated VMIs assessed on a five-point scale were significantly higher (p < 0.001) than that in the SECT images (3.2 ± 0.4 and 2.8 ± 0.4 for overall image quality and tumor enhancement, respectively). CONCLUSIONS: The quality of the SECT image was significantly improved both objectively and subjectively using the proposed deep learning model for pancreatic tumors in radiotherapy.


Asunto(s)
Aprendizaje Profundo , Neoplasias Pancreáticas , Imagen Radiográfica por Emisión de Doble Fotón , Humanos , Neoplasias Pancreáticas/diagnóstico por imagen , Fenómenos Físicos , Interpretación de Imagen Radiográfica Asistida por Computador , Estudios Retrospectivos , Relación Señal-Ruido , Tomografía Computarizada por Rayos X
9.
Med Dosim ; 46(4): 328-334, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33931321

RESUMEN

To compare the effect of a contrast-enhanced (CE) agent on volumetric-modulated arc therapy plans based on four types of images-virtual monochromatic images (VMIs) captured at 70 and 140 keV (namely VMI70 and VMI140, respectively), water density image (WDI), and virtual non-contrast image (VNC) generated using a dual-energy computed tomography (DECT) system. A tissue characterization phantom and a multi-energy phantom were scanned, and VMI70, VMI140, WDI, and VNC were retrospectively reconstructed. For each image, a lookup table (LUT) was created. For 13 patients with nasopharyngeal cancer, non-CE and CE scans were performed, and volumetric-modulated arc therapy plans were generated on the basis of non-CE VMI70. Subsequently, the doses were re-calculated using the four types of DECT images and their corresponding LUTs. The maximum differences in the physical density estimation were 21.3, 5.2, -3.9, and 0.5% for VMI70, VMI140, WDI, and VNC, respectively. Compared with VMI70, the WDI approach significantly reduced (p < 0.05) the dosimetric difference due to the CE agent for the planning target volume (PTV) (D50%), whereas the difference was significantly increased for D1%. Except for PTV (D1%), the differences were significantly lower (p < 0.05) in the treatment plans based on VMI140 and VNC than that based on VMI70. For the VNC, the mean difference was less than 0.2% for all dosimetric parameters for the PTV. For patients with NPC, treatment plans based on the VNC derived from CE scan showed the best agreement with those based on the non-CE VMI70. Ideally, the effect of CE agent on dose distribution does not appear in treatment planning procedures.


Asunto(s)
Neoplasias Nasofaríngeas , Radioterapia de Intensidad Modulada , Humanos , Planificación de la Radioterapia Asistida por Computador , Estudios Retrospectivos , Tomografía Computarizada por Rayos X
10.
PLoS One ; 16(1): e0244079, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33481820

RESUMEN

To assess the objective and subjective image quality, and respiratory motion of hepatocellular carcinoma with portal vein tumor thrombosis (PVTT) using the contrast-enhanced four-dimensional dual-energy computed tomography (CE-4D-DECT). For twelve patients, the virtual monochromatic image (VMI) derived from the CE-4D-DECT with the highest contrast to noise ratio (CNR) was determined as the optimal VMI (O-VMI). To assess the objective and subjective image quality, the CNR and five-point score of the O-VMI were compared to those of the standard VMI at 77 keV (S-VMI). The respiratory motion of the PVTT and diaphragm was measured based on the exhale and inhale phase images. The VMI at 60 keV yielded the highest CNR (4.8 ± 1.4) which was significantly higher (p = 0.02) than that in the S-VMI (3.8 ± 1.2). The overall image quality (4.0 ± 0.6 vs 3.1 ± 0.5) and tumor conspicuity (3.8 ± 0.8 vs 2.8 ± 0.6) of the O-VMI determined by three radiation oncologists was significantly higher (p < 0.01) than that of the S-VMI. The diaphragm motion in the L-R (3.3 ± 2.5 vs 1.2 ± 1.1 mm), A-P (6.7 ± 4.0 vs 1.6 ± 1.3mm) and 3D (8.8 ± 3.5 vs 13.1 ± 4.9 mm) directions were significantly larger (p < 0.05) compared to the tumor motion. The improvement of objective and subjective image quality was achieved in the O-VMI. Because the respiratory motion of the diaphragm was larger than that of the PVTT, we need to be pay attention for localizing target in radiotherapy.


Asunto(s)
Carcinoma Hepatocelular/diagnóstico por imagen , Tomografía Computarizada Cuatridimensional , Interpretación de Imagen Asistida por Computador/métodos , Neoplasias Hepáticas/diagnóstico por imagen , Trombosis/diagnóstico por imagen , Anciano , Carcinoma Hepatocelular/complicaciones , Medios de Contraste/química , Diafragma/diagnóstico por imagen , Diafragma/fisiología , Femenino , Humanos , Neoplasias Hepáticas/complicaciones , Masculino , Persona de Mediana Edad , Vena Porta/diagnóstico por imagen , Vena Porta/patología , Estudios Retrospectivos , Relación Señal-Ruido , Trombosis/complicaciones
11.
J Radiat Res ; 62(1): 163-171, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33392618

RESUMEN

The immobilization of patients with a bite block (BB) carries the risk of interpersonal infection, particularly in the context of pandemics such as COVID-19. Here, we compared the intra-fractional patient setup error (intra-SE) with and without a BB during fractionated intracranial stereotactic irradiation (STI). Fifteen patients with brain metastases were immobilized using a BB without a medical mask, while 15 patients were immobilized without using a BB and with a medical mask. The intra-SEs in six directions (anterior-posterior (AP), superior-inferior (SI), left-right (LR), pitch, roll, and yaw) were calculated by using cone-beam computed tomography images acquired before and after the treatments. We analyzed a total of 53 and 67 treatment sessions for the with- and without-BB groups, respectively. A comparable absolute mean translational and rotational intra-SE was observed (P > 0.05) in the AP (0.19 vs 0.23 mm with- and without-BB, respectively), SI (0.30 vs 0.29 mm), LR (0.20 vs 0.29 mm), pitch (0.18 vs 0.27°), roll (0.23 vs 0.23°) and yaw (0.27 vs 22°) directions. The resultant planning target volume (PTV) margin to compensate for intra-SE was <1 mm. No statistically significant correlation was observed between the intra-SE and treatment times. A PTV margin of <1 mm was achieved even when patients were immobilized without a BB during STI dose delivery.


Asunto(s)
COVID-19 , Irradiación Craneana , Fraccionamiento de la Dosis de Radiación , Inmovilización/instrumentación , Máscaras/efectos adversos , Pandemias , Posicionamiento del Paciente/instrumentación , Radiocirugia , Errores de Configuración en Radioterapia , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundario , COVID-19/prevención & control , Diseño de Equipo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Planificación de la Radioterapia Asistida por Computador/métodos , Estudios Retrospectivos , Tomografía Computarizada por Rayos X
12.
J Comput Assist Tomogr ; 45(1): 18-23, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-31738200

RESUMEN

OBJECTIVES: The objective of this study was to assess the objective and subjective qualities of the contrast-enhanced 4-dimensional dual-energy computed tomography using adaptive statistical iterative reconstruction (ASiR) and ASiR-V. METHODS: The virtual monochromatic images at 60 keV were reconstructed using filtered back projection, ASiR, and ASiR-V (10%-100%) for 14 patients with pancreatic cancer. The contrast-to-noise ratio (CNR) was calculated, and the subjective measurements were compared based on a 5-point score scale. RESULTS: The ASiR-V yielded a significantly higher CNR than ASiR (P < 0.05). The subjective image quality (peak) was significantly improved (P < 0.01) with ASiR (50%) (3.8, 3.5, and 4.0; overall image quality, tumor delineation, and noise, respectively) and with ASiR-V (50%) (3.9, 3.5, and 4.2, respectively) compared with the filtered back projection (3.2, 3.2, and 3.0, respectively). CONCLUSIONS: The ASiR-V yielded higher CNR than ASiR and provided the highest subjective scores regarding the overall image quality.


Asunto(s)
Neoplasias Pancreáticas/diagnóstico por imagen , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Imagen Radiográfica por Emisión de Doble Fotón/métodos , Anciano , Anciano de 80 o más Años , Medios de Contraste , Femenino , Tomografía Computarizada Cuatridimensional , Humanos , Masculino , Persona de Mediana Edad
13.
Eur J Radiol ; 132: 109293, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32987251

RESUMEN

PURPOSE: To investigate whether a novel iterative cone-beam computed tomography (CBCT) reconstruction algorithm reduces metal artifacts in head and neck patient images. METHOD: An anthropomorphic phantom and 35 patients with dental metal prostheses or implants were analyzed. All CBCT images were acquired using a TrueBeam linear accelerator and reconstructed with a Feldkamp-Davis-Kress algorithm-based CBCT (FDK-CBCT) and an iterative CBCT algorithm. The mean Hounsfield unit (HU) and standard deviation values were measured on the tongue near the metal materials and the unaffected region as reference values. The artifact index (AI) was calculated. For objective image analysis, the HU value and AI were compared between FDK-CBCT and iterative CBCT images in phantom and clinical studies. Subjective image analyses of metal artifact scores and soft tissue visualizations were conducted using a five-point scale by two reviewers in the clinical study. RESULTS: The HU value and AI showed significant artifact reduction for the iterative CBCT than for the FDK-CBCT images (phantom study: 389.8 vs.-10.3 for HU value, 322.9 vs. 96.2 for AI, FDK-CBCT vs. iterative CBCT, respectively; clinical study: 210.3 vs. 69.0 for HU value, 149.6 vs. 70.7 for AI). The subjective scores in the clinical patient study were improved in the iterative CBCT images (metal artifact score: 1.1 vs. 2.9, FDK-CBCT vs. iterative CBCT, respectively; soft tissue visualization: 1.8 vs. 3.6). CONCLUSIONS: The iterative CBCT reconstruction algorithm substantially reduced metal artifacts caused by dental metal prostheses and improved soft tissue visualization compared to FDK-CBCT in phantom and clinical studies.


Asunto(s)
Artefactos , Tomografía Computarizada de Haz Cónico Espiral , Algoritmos , Tomografía Computarizada de Haz Cónico , Humanos , Procesamiento de Imagen Asistido por Computador , Fantasmas de Imagen
14.
Br J Radiol ; 93(1106): 20180850, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31825643

RESUMEN

OBJECTIVE: Determination of the optimal energy level of virtual monochromatic image (VMI) for brain metastases in contrast-enhanced dual-energy CT (DECT) for radiosurgery and assessment of the subjective and objective image quality of VMI at the optimal energy level. METHODS: 20 patients (total of 42 metastases) underwent contrast-enhanced DECT. Spectral image analysis of VMIs at energy levels ranging from 40 to 140 keV in 1 keV increments was performed to determine the optimal VMI (VMIopt) as the one corresponding to the highest contrast-to-noise ratio (CNR) between brain parenchyma and the metastases. The objective and subjective values of VMIopt were compared to those of the VMI with 120 kVp equivalent, defined as reference VMI (VMIref, 77 keV). The objective measurement parameters included mean HU value and SD of tumor and brain parenchyma, absolute lesion contrast (LC), and CNR. The subjective measurements included five-point scale assessment of "overall image quality" and "tumor delineation" by three radiation oncologists. RESULTS: The VMI at 63 keV was defined as VMIopt. The LC and CNR of VMIopt were significantly (p < 0.01) higher than those of VMIref (LC: 37.4 HU vs 24.7 HU; CNR: 1.1 vs 0.8, respectively). Subjective analysis rated VMIopt significantly (p < 0.01) superior to VMIref with respect to the overall image quality (3.2 vs 2.9, respectively) and tumor delineation (3.5 vs 2.9, respectively). CONCLUSION: The VMI at 63 keV derived from contrast-enhanced DECT yielded the highest CNR and improved the objective and subjective image quality for radiosurgery, compared to VMIref. ADVANCES IN KNOWLEDGE: This paper investigated for the first time the optimal energy level of VMI in DECT for brain metastases. The findings will lead to improvement in tumor visibility with optimal VMI and consequently supplement accuracy delineation of brain metastases.


Asunto(s)
Neoplasias Encefálicas/radioterapia , Radiocirugia/métodos , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/secundario , Femenino , Humanos , Masculino , Persona de Mediana Edad , Imagen Radiográfica por Emisión de Doble Fotón/métodos , Radioterapia Guiada por Imagen , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos , Carga Tumoral , Adulto Joven
15.
J Appl Clin Med Phys ; 20(11): 144-152, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31633869

RESUMEN

Virtual monochromatic images (VMIs) at a lower energy level can improve image quality but the computed tomography (CT) number of iodine contained in the contrast-enhanced agent is dramatically increased. We assessed the effect of the use of contrast-enhanced agent on the dose distributions in volumetric modulated arc therapy (VMAT) planning for head and neck cancer (HNC). Based on the VMIs at 40 keV (VMI40keV ), 60 keV(VMI60keV ), and 77 keV (VMI77keV ) of a tissue characterization phantom, lookup tables (LUTs) were created. VMAT plans were generated for 15 HNC patients based on contrast-enhanced- (CE-) VMIs at 40-, 60-, and 77 keV using the corresponding LUTs, and the doses were recalculated based on the noncontrast-enhanced- (nCE-) VMIs. For all structures, the difference in CT numbers owing to the contrast-enhanced agent was prominent as the energy level of the VMI decreased, and the mean differences in CT number between CE- and nCE-VMI was the largest for the clinical target volume (CTV) (125.3, 55.9, and 33.1 HU for VMI40keV , VMI60keV , and VMI77keV, respectively). The mean difference of the dosimetric parameters (D99% , D50% , D1% , Dmean , and D0.1cc ) for CTV and OARs was <1% in the treatment plans based on all VMIs. The maximum difference was observed for CTV in VMI40keV (2.4%), VMI60keV (1.9%), and VMI77keV (1.5%) plans. The effect of the contrast-enhanced agent was larger in the VMAT plans based on the VMI at a lower energy level for HNC patients. This effect is not desirable in a treatment planning procedure.


Asunto(s)
Medios de Contraste , Neoplasias de Cabeza y Cuello/radioterapia , Fantasmas de Imagen , Garantía de la Calidad de Atención de Salud/normas , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Órganos en Riesgo/efectos de la radiación , Dosificación Radioterapéutica , Tomografía Computarizada por Rayos X/métodos
16.
Phys Med ; 60: 83-90, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31000091

RESUMEN

PURPOSE: Though virtual monochromatic images (VMIs) at low energy levels can improve image quality, the measured Hounsfield unit (HU) values can be inaccurate. We assessed the dosimetric error due to inaccurate HU estimation in volumetric modulated arc therapy (VMAT) planning. METHODS: Based on the VMIs at 50 keV (VMI50keV), 77 keV (VMI77keV) and single-energy CT (SECT) image for a phantom with different sizes, lookup tables (LUTL and LUTS) were created. Using an anthropomorphic phantom (head and spine regions), VMAT plans were generated based on VMI50keV, VMI77keV and SECT using the corresponding LUTL, and then, the doses were re-calculated using LUTS. For clinical cases, 30 VMAT plans (prostate, brain, and spine cases) were generated based on VMI50keV and VMI77keV. RESULTS: In the anthropomorphic phantom study, the difference in the dosimetric parameters for planning target volume (PTV) in the VMAT plan based on the VMI77keV was smallest (within 0.1 Gy) among three types of treatment planning approach. In clinical cases, in general, the differences of the 3-dimensional gamma passing rate and dosimetric parameters in the treatment plans based on the VMI50keV were larger than those in the VMI77keV. Especially for brain cases, the difference for PTV was more prominent when AXB was used (the maximum difference was 0.5 Gy) than AAA. CONCLUSIONS: The dosimetric error due to the inaccurate HU estimation was larger in the VMIs at low energy levels. This may be clinically insignificant, but should be avoided in the VMAT treatment planning.


Asunto(s)
Radiometría/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Tomografía Computarizada por Rayos X , Color , Humanos , Modelos Anatómicos , Fantasmas de Imagen , Dosificación Radioterapéutica , Tomografía Computarizada por Rayos X/métodos
17.
Phys Med ; 56: 34-40, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30527087

RESUMEN

PURPOSE: Assess the accuracy for quantitative measurements of electron density relative to water (ρe/ρe,w), effective atomic number (Zeff) and stopping power ratio relative to water (SPRw) using a dual-layer computed tomography (DLCT) system. METHODS AND MATERIALS: A tissue characterization phantom was scanned using DLCT with varying scanning parameters (i.e., tube voltage, rotation time, CTDIvol, and scanning mode) and different reference materials. Then, electron density ρe/ρe,w and atomic number Zeff images were reconstructed, and their values were determined for each reference materials. Based on these two values, SPRw was calculated. Finally, the percent error (PE) against the theoretical values was calculated for reference materials. RESULTS: Significant linear relationships (p < 0.001) were observed between the measured and theoretical ρe/ρe,w (r = 1.000), Zeff (r = 0.989) and SPRw (r = 1.000) values. The PE for each reference material varied from -2.0 to 1.2% (mean, <0.1%) for electron density ρe/ρe,w, from -6.4 to 8.0% (mean, -2.0%) for atomic number Zeff, and from -2.0 to 1.9% (mean, 0.3%) for stopping power ratio SPRw. The mean PE of ρe/ρe,w (<0.1%), Zeff (<-2.5%) and SPRw (<0.4%) was verified across the variation of scanning parameters (p > 0.85). CONCLUSIONS: DLCT provides a reasonable accuracy in the measurements of ρe/ρe,w, Zeff and SPRw, and could enhance radiotherapy treatment planning and the subsequent outcomes.


Asunto(s)
Electrones , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Guiada por Imagen/métodos , Humanos , Modelos Teóricos , Fantasmas de Imagen , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/instrumentación , Radioterapia Guiada por Imagen/instrumentación , Tomografía Computarizada por Rayos X/instrumentación , Tomografía Computarizada por Rayos X/métodos
18.
J Comput Assist Tomogr ; 42(6): 965-971, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30252833

RESUMEN

OBJECTIVE: The aim of the study was to compare the accuracy of quantification of iodine and Hounsfield unit (HU) values on virtual monochromatic imaging (VMI) using dual-layer computed tomography (DLCT) and fast kilovolt-switching computed tomography (FKSCT). MATERIALS AND METHODS: This study was performed in 2 phantoms (large and small) using 16 rods representing different materials (iodine, calcium, blood, and adipose tissue) with different dimensions and concentrations. The absolute percentage errors (absolute ratio of measurement error to true iodine concentration) for iodine concentration and HU value on VMI at 50, 70, and 100 keV were compared between DLCT and FKSCT. The Mann-Whitney U test was used to assess statistical significance. RESULTS: Overall, the absolute percentage errors for iodine concentration and HU value on VMI were smaller for DLCT than for FKSCT. CONCLUSIONS: Overall, the accuracy of iodine and HU values was higher for DLCT than for FKSCT.


Asunto(s)
Medios de Contraste/química , Yodo/química , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Imagen Radiográfica por Emisión de Doble Fotón/métodos , Tomografía Computarizada por Rayos X/métodos , Fantasmas de Imagen
19.
Med Phys ; 45(11): 5208-5217, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30198189

RESUMEN

PURPOSE: A contrast-enhancing agent is imperative for the accurate target delineation of pancreatic tumors. This study demonstrates the potential use of treatment planning for patients with pancreatic tumors based on the water density image (WDI) generated by dual-energy computed tomography (DECT). METHODS: Tissue characterization and multi-energy phantom scanning were performed through DECT and the physical characteristics of the WDI and a virtual monochromatic image (VMI) were assessed. The measured and the corresponding theoretical electron density relative to water (RED) and mass density (MD) were compared. Treatment plans based on the WDI (TPWDI ) and VMI (TPVMI ) were compared for 22 pancreatic cancer patients who underwent contrast-enhanced DECT scan. RESULTS: The total absolute difference in the HU value between the conventional 120 kVp images and the VMI was the smallest at the energy level of 77 keV (3.3 HU), and the VMI at 77 keV was used for subsequent analysis. The difference between the measured and theoretical values of RED and MD for iodine using the VMI (>15%) was larger than that using WDI (<4%). In clinical cases, the maximum difference in the dosimetric parameters between TPWDI and TPWDI for the planning target volume was 3.0% when the doses were calculated using AXB, and for the duodenum, it was 1.7%. CONCLUSIONS: The WDI estimated the RED and MD accurately and could form the basis for a new treatment planning approach for pancreatic cancer using contrast-enhancing agent.


Asunto(s)
Medios de Contraste , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/radioterapia , Fantasmas de Imagen , Planificación de la Radioterapia Asistida por Computador/métodos , Tomografía Computarizada por Rayos X/instrumentación , Agua , Algoritmos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...