RESUMEN
GH acts in numerous organs expressing the GH receptor (GHR), including the brain. However, the mechanisms behind the brain's permeability to GH and how this hormone accesses different brain regions remain unclear. It is well-known that an acute GH administration induces phosphorylation of the signal transducer and activator of transcription 5 (pSTAT5) in the mouse brain. Thus, the pattern of pSTAT5 immunoreactive cells was analyzed at different time points after IP or intracerebroventricular GH injections. After a systemic GH injection, the first cells expressing pSTAT5 were those near circumventricular organs, such as arcuate nucleus neurons adjacent to the median eminence. Both systemic and central GH injections induced a medial-to-lateral pattern of pSTAT5 immunoreactivity over time because GH-responsive cells were initially observed in periventricular areas and were progressively detected in lateral brain structures. Very few choroid plexus cells exhibited GH-induced pSTAT5. Additionally, Ghr mRNA was poorly expressed in the mouse choroid plexus. In contrast, some tanycytes lining the floor of the third ventricle expressed Ghr mRNA and exhibited GH-induced pSTAT5. The transport of radiolabeled GH into the hypothalamus did not differ between wild-type and dwarf Ghr knockout mice, indicating that GH transport into the mouse brain is GHR independent. Also, single-photon emission computed tomography confirmed that radiolabeled GH rapidly reaches the ventral part of the tuberal hypothalamus. In conclusion, our study provides novel and valuable information about the pattern and mechanisms behind GH transport into the mouse brain.
Asunto(s)
Encéfalo , Hormona del Crecimiento , Receptores de Somatotropina , Factor de Transcripción STAT5 , Animales , Factor de Transcripción STAT5/metabolismo , Factor de Transcripción STAT5/genética , Encéfalo/metabolismo , Hormona del Crecimiento/metabolismo , Ratones , Receptores de Somatotropina/metabolismo , Receptores de Somatotropina/genética , Masculino , Ratones Noqueados , Ratones Endogámicos C57BL , Fosforilación , Plexo Coroideo/metabolismo , Hipotálamo/metabolismo , Inyecciones IntraventricularesRESUMEN
The kallikrein-kinin system is a versatile regulatory network implicated in various biological processes encompassing inflammation, nociception, blood pressure control, and central nervous system functions. Its physiological impact is mediated through G-protein-coupled transmembrane receptors, specifically the B1 and B2 receptors. Dopamine, a key catecholamine neurotransmitter widely distributed in the CNS, plays a crucial role in diverse physiological functions including motricity, reward, anxiety, fear, feeding, sleep, and arousal. Notably, the potential physical interaction between bradykinin and dopaminergic receptors has been previously documented. In this study, we aimed to explore whether B2R modulation in catecholaminergic neurons influences the dopaminergic pathway, impacting behavioral, metabolic, and motor aspects in both male and female mice. B2R ablation in tyrosine hydroxylase cells reduced the body weight and lean mass without affecting body adiposity, substrate oxidation, locomotor activity, glucose tolerance, or insulin sensitivity in mice. Moreover, a B2R deficiency in TH cells did not alter anxiety levels, exercise performance, or motor coordination in female and male mice. The concentrations of monoamines and their metabolites in the substantia nigra and cortex region were not affected in knockout mice. In essence, B2R deletion in TH cells selectively influenced the body weight and composition, leaving the behavioral and motor aspects largely unaffected.
Asunto(s)
Receptor de Bradiquinina B2 , Tirosina 3-Monooxigenasa , Ratones , Masculino , Femenino , Animales , Receptor de Bradiquinina B2/genética , Receptor de Bradiquinina B2/metabolismo , Tirosina 3-Monooxigenasa/genética , Bradiquinina/farmacología , Receptor de Bradiquinina B1/metabolismo , Peso Corporal , Ratones NoqueadosRESUMEN
The role of growth hormone (GH) in the central nervous system (CNS) involves neuroprotection, neuroregeneration, formation of axonal projections, control of cognition, and regulation of metabolism. As GH induces insulin-like growth factor-1 (IGF-1) expression in many tissues, differentiating the specific functions of GH and IGF-1 in the organism is a significant challenge. The actions of GH and IGF-1 in neurons have been more extensively studied than their functions in nonneuronal cells (e.g., microglial cells). Glial cells are fundamentally important to CNS function. Microglia, astrocytes, oligodendrocytes, and tanycytes are essential to the survival, differentiation, and proliferation of neurons. As the interaction of the GH/IGF-1 axis with glial cells merits further exploration, our objective for this review was to summarize and discuss the available literature regarding the genuine effects of GH on glial cells, seeking to differentiate them from the role played by IGF-1 action whenever possible.
Asunto(s)
Hormona del Crecimiento , Factor I del Crecimiento Similar a la Insulina , Hormona del Crecimiento/farmacología , Hormona del Crecimiento/fisiología , Microglía/metabolismo , Astrocitos/metabolismo , Sistema Nervioso Central/metabolismoRESUMEN
Growth hormone (GH) action in specific neuronal populations regulates neuroendocrine responses, metabolism, and behavior. However, the potential role of central GH action on glial function is less understood. The present study aims to determine how the hypothalamic expression of several neuroglial markers is affected by central GH action in male mice. The dwarf GH- and insulin-like growth factor-1 (IGF-1)-deficient Ghrhrlit/lit mice showed decreased mRNA expression of Nes (Nestin), Gfap, Iba1, Adgre1 (F4/80), and Tnf (TNFα) in the hypothalamus, compared to wild-type animals. In contrast, transgenic overexpression of GH led to high serum GH and IGF-1 levels, and increased hypothalamic expression of Nes, Gfap, Adgre1, Iba1, and Rax. Hepatocyte-specific GH receptor (GHR) knockout mice, which are characterized by high serum GH levels, but reduced IGF-1 secretion, showed increased mRNA expression of Gfap, Iba1, Tnf, and Sox10, demonstrating that the increase in GH levels alters the hypothalamic expression of glial markers associated with neuroinflammation, independently of IGF-1. Conversely, brain-specific GHR knockout mice showed reduced expression of Gfap, Adgre1, and Vim (vimentin), indicating that brain GHR signaling is necessary to mediate GH-induced changes in the expression of several neuroglial markers. In conclusion, the hypothalamic mRNA levels of several neuroglial markers associated with inflammation are directly modulated by GHR signaling in male mice.
Asunto(s)
Hormona del Crecimiento , Factor I del Crecimiento Similar a la Insulina , Ratones , Masculino , Animales , Hormona del Crecimiento/genética , Hormona del Crecimiento/metabolismo , Hormona del Crecimiento/farmacología , Factor I del Crecimiento Similar a la Insulina/farmacología , Hipotálamo/metabolismo , Ratones Noqueados , ARN Mensajero/metabolismo , Receptores Acoplados a Proteínas G/metabolismoRESUMEN
The pattern of gonadotropin secretion along the estrous cycle was elegantly described in rats. Less information exists about the pattern of gonadotropin secretion in gonad-intact mice, particularly regarding the follicle-stimulating hormone (FSH). Using serial blood collections from the tail-tip of gonad-intact C57BL/6 mice on the first day of cornification (transition from diestrus to estrus; hereafter called proestrus), we observed that the luteinizing hormone (LH) and FSH surge cannot be consistently detected since only one out of eight females (12%) showed increased LH levels. In contrast, a high percentage of mice (15 out of 21 animals; 71%) exhibited LH and FSH surges on the proestrus when a single serum sample was collected. Mice that exhibited LH and FSH surges on the proestrus showed c-Fos expression in gonadotropin-releasing hormone- (GnRH; 83.4% of co-localization) and kisspeptin-expressing neurons (42.3% of co-localization) of the anteroventral periventricular nucleus (AVPV). Noteworthy, mice perfused on proestrus, but that failed to exhibit LH surge, showed a smaller, but significant expression of c-Fos in GnRH (32.7%) and AVPVKisspeptin (14.0%) neurons. Finally, 96 serial blood samples were collected hourly in eight regular cycling C57BL/6 females to describe the pattern of LH and FSH secretion along the estrous cycle. Small elevations in LH and FSH levels were detected at the time expected for the LH surge. In summary, the present study improves our understanding of the pattern of gonadotropin secretion and the activation of central components of the hypothalamic-pituitary-gonadal axis along the estrous cycle of C57BL/6 female mice.
Asunto(s)
Kisspeptinas , Hormona Luteinizante , Animales , Ciclo Estral , Femenino , Hormona Folículo Estimulante , Hormona Liberadora de Gonadotropina/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-fos , RatasRESUMEN
Growth hormone (GH) acts in several hypothalamic neuronal populations to modulate metabolism and the autoregulation of GH secretion via negative-feedback loops. However, few studies have investigated whether GH receptor (GHR) expression in specific neuronal populations is required for the homeostatic control of GH secretion and energy homeostasis. In the present study, we investigated the consequences of the specific GHR ablation in GABAergic (VGAT-expressing) or glutamatergic (VGLUT2-expressing) cells. GHR ablation in GABAergic neurons led to increased GH secretion, lean mass, and body growth in male and female mice. VGAT-specific GHR knockout (KO) male mice also showed increased serum insulin-like growth factor-1, hypothalamic Ghrh, and hepatic Igf1 messenger RNA levels. In contrast, normal GH secretion, but reduced lean body mass, was observed in mice carrying GHR ablation in glutamatergic neurons. GHR ablation in GABAergic cells increased weight loss and led to decreased blood glucose levels during food restriction, whereas VGLUT2-specific GHR KO mice showed blunted feeding response to 2-deoxy-D-glucose both in males and females, and increased relative food intake, oxygen consumption, and serum leptin levels in male mice. Of note, VGLUT2-cre female mice, independently of GHR ablation, exhibited a previously unreported phenotype of mild reduction in body weight without further metabolic alterations. The autoregulation of GH secretion via negative-feedback loops requires GHR expression in GABAergic cells. Furthermore, GHR ablation in GABAergic and glutamatergic neuronal populations leads to distinct metabolic alterations. These findings contribute to the understanding of the neuronal populations responsible for mediating the neuroendocrine and metabolic effects of GH.
Asunto(s)
Neuronas GABAérgicas , Receptores de Somatotropina , Animales , Femenino , Hormona del Crecimiento/metabolismo , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Noqueados , Receptores de Leptina/metabolismo , Receptores de Somatotropina/genética , Receptores de Somatotropina/metabolismoRESUMEN
Growth hormone (GH)-responsive neurons regulate several homeostatic behaviors including metabolism, energy balance, arousal, and stress response. Therefore, it is possible that GH-responsive neurons play a role in other responses such as CO2/H+-dependent breathing behaviors. Here, we investigated whether central GH receptor (GHR) modulates respiratory activity in conscious unrestrained mice. First, we detected clusters of GH-responsive neurons in the tyrosine hydroxylase-expressing cells in the rostroventrolateral medulla (C1 region) and within the locus coeruleus (LC). No significant expression was detected in phox2b-expressing cells in the retrotrapezoid nucleus. Whole body plethysmography revealed a reduction in the tachypneic response to hypoxia (FiO2 = 0.08) without changing baseline breathing and the hypercapnic ventilatory response. Contrary to the physiological findings, we did not find significant differences in the number of fos-activated cells in the nucleus of the solitary tract (NTS), C1, LC and paraventricular nucleus of the hypothalamus (PVH). Our finding suggests a possible secondary role of central GH action in the tachypneic response to hypoxia in conscious mice.
Asunto(s)
Hipercapnia , Núcleo Solitario , Animales , Hormona del Crecimiento/metabolismo , Hipotálamo/metabolismo , Hipoxia/metabolismo , Ratones , Núcleo Solitario/metabolismoRESUMEN
AIMS: The present study aims to compare the responses between male and female C57BL/6 mice to multiple metabolic challenges to understand the importance of sex in the control of energy homeostasis. MAIN METHODS: Male and female C57BL/6 mice were subjected to nutritional and hormonal challenges, such as food restriction and refeeding, diet-induced obesity, feeding response to ghrelin and leptin, ghrelin-induced growth hormone secretion, and central responsiveness to ghrelin and leptin. The hypothalamic expression of transcripts that control energy homeostasis was also evaluated. KEY FINDINGS: Male mice lost more weight and lean body mass in response to food restriction, compared to females. During refeeding, males accumulated more body fat and exhibited lower energy expenditure and glycemia, as compared to females. Additionally, female mice exhibited a higher protection against diet-induced obesity and related metabolic imbalances in comparison to males. Low dose ghrelin injection elicited higher food intake and growth hormone secretion in male mice, whereas the acute anorexigenic effect of leptin was more robust in females. However, the sex differences in the feeding responses to ghrelin and leptin were not explained by variations in the central responsiveness to these hormones nor by differences in the fiber density from arcuate nucleus neurons. Female, but not male, mice exhibited compensatory increases in hypothalamic Pomc mRNA levels in response to diet-induced obesity. SIGNIFICANCE: Our findings revealed several sexually differentiated responses to metabolic challenges in C57BL/6 mice, highlighting the importance of taking into account sex differences in metabolic studies.
Asunto(s)
Ghrelina , Leptina , Animales , Femenino , Ghrelina/farmacología , Hormona del Crecimiento/metabolismo , Hipotálamo/metabolismo , Leptina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/metabolismoRESUMEN
Hypophysiotropic somatostatin (SST) neurons in the periventricular hypothalamic area express growth hormone (GH) receptor (GHR) and are frequently considered as the key neuronal population that mediates the negative feedback loop controlling the hypothalamic-GH axis. Additionally, insulin-like growth factor-1 (IGF-1) may also act at the hypothalamic level to control pituitary GH secretion via long-loop negative feedback. However, to the best of our knowledge, no study so far has tested whether GHR or IGF-1 receptor (IGF1R) signaling specifically in SST neurons is required for the homeostatic control of GH secretion. Here we show that GHR ablation in SST neurons did not impact the negative feedback mechanisms that control pulsatile GH secretion or body growth in male and female mice. The sex difference in hepatic gene expression profile was only mildly affected by GHR ablation in SST neurons. Similarly, IGF1R ablation in SST neurons did not affect pulsatile GH secretion, body growth, or hepatic gene expression. In contrast, simultaneous ablation of both GHR and IGF1R in SST-expressing cells increased mean GH levels and pulse amplitude in male and female mice, and partially disrupted the sex differences in hepatic gene expression. Despite the increased GH secretion in double knockout mice, no alterations in body growth and serum or liver IGF-1 levels were observed. In summary, GHR and IGF1R signaling in SST neurons play a redundant role in the control of GH secretion. Furthermore, our results reveal the importance of GH/IGF-1 negative feedback mechanisms on SST neurons for the establishment of sex differences in hepatic gene expression profile.
Asunto(s)
Hormona del Crecimiento , Hormona de Crecimiento Humana , Animales , Femenino , Hormona del Crecimiento/metabolismo , Hormona de Crecimiento Humana/metabolismo , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Masculino , Ratones , Neuronas/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Receptores de Somatotropina/genética , Receptores de Somatotropina/metabolismo , Somatostatina/metabolismoRESUMEN
Growth hormone (GH) receptor (GHR) signaling induces the phosphorylation of the signal transducer and activator of transcription 5 (pSTAT5) in the cells of several tissues including in the hypothalamus. During pregnancy, several STAT5-recruiting hormones (e.g., prolactin, GH and placental lactogens) are highly secreted. However, the precise contribution of GHR signaling to the surge of pSTAT5 immunoreactive neurons that occurs in the hypothalamus of pregnant mice is currently unknown. Thus, the objective of the present study was to determine whether GHR expression in neurons is required for inducing pSTAT5 expression in several hypothalamic nuclei during pregnancy. Initially, we demonstrated that late pregnant C57BL/6 mice (gestational day 14 to 18) exhibited increased pulsatile GH secretion compared to virgin females. Next, we confirmed that neuron-specific GHR ablation robustly reduces hypothalamic Ghr mRNA levels and prevents GH-induced pSTAT5 in the arcuate, paraventricular and ventromedial hypothalamic nuclei. Subsequently, the number of pSTAT5 immunoreactive cells was determined in the hypothalamus of late pregnant mice. Although neuron-specific GHR ablation did not affect the number of pSTAT5 immunoreactive cells in the paraventricular nucleus of the hypothalamus, reduced pSTAT5 expression was observed in the arcuate and ventromedial nuclei of pregnant neuron-specific GHR knockouts, compared to control pregnant mice. In summary, a subset of hypothalamic neurons requires GHR signaling to express pSTAT5 during pregnancy. These findings contribute to the understanding of the endocrine factors that affect the activation of transcription factors in the brain during pregnancy.
Asunto(s)
Proteínas Portadoras/metabolismo , Hipotálamo/metabolismo , Preñez/metabolismo , Factor de Transcripción STAT5/metabolismo , Animales , Proteínas Portadoras/genética , Femenino , Ratones , Ratones Endogámicos C57BL , Placenta/metabolismo , EmbarazoRESUMEN
Growth hormone (GH) deficiency is a common cause of late sexual maturation and fertility issues. To determine whether GH-induced effects on reproduction are associated with alterations in hypothalamic kisspeptin system, we studied the male reproduction in two distinct GH deficiency mouse models. In the first model, mice present GH deficiency secondary to arcuate nucleus of the hypothalamus (ARH) lesions induced by posnatal monosodium glutamate (MSG) injections. MSG-induced ARH lesions led to significant reductions in hypothalamic Ghrh mRNA expression and consequently growth. Hypothalamic Kiss1 mRNA expression and Kiss1-expressing cells in the ARH were disrupted in the MSG-treated mice. In contrast, kisspeptin immunoreactivity remained preserved in the anteroventral periventricular and rostral periventricular nuclei (AVPV/PeN) of MSG-treated mice. Importantly, ARH lesions caused late sexual maturation and infertility in male mice. In our second mouse model, we studied animals profound GH deficiency due to a loss-of-function mutation in the Ghrhr gene (Ghrhrlit/lit mice). Interestingly, although Ghrhrlit/lit mice exhibited late puberty onset, hypothalamic Kiss1 mRNA expression and hypothalamic kisspeptin fiber density were normal in Ghrhrlit/lit mice. Despite presenting dwarfism, the majority of Ghrhrlit/lit male mice were fertile. These findings suggest that spontaneous GH deficiency during development does not compromise the kisspeptin system. Furthermore, ARH Kiss1-expressing neurons are required for fertility, while AVPV/PeN kisspeptin expression is sufficient to allow maturation of the hypothalamic-pituitary-gonadal axis in male mice.
Asunto(s)
Núcleo Arqueado del Hipotálamo/metabolismo , Hormona del Crecimiento/deficiencia , Sistema Hipotálamo-Hipofisario/metabolismo , Kisspeptinas/metabolismo , Reproducción , Maduración Sexual , Animales , Enanismo/genética , Enanismo/metabolismo , Fertilidad , Kisspeptinas/genética , Masculino , Ratones , Neuronas/metabolismo , Receptores de Neuropéptido/genética , Receptores de Neuropéptido/metabolismo , Receptores de Hormona Reguladora de Hormona Hipofisaria/genética , Receptores de Hormona Reguladora de Hormona Hipofisaria/metabolismoRESUMEN
Corticotropin-releasing hormone (CRH) cells are the dominant neuronal population responsive to the growth hormone (GH) in the paraventricular nucleus of the hypothalamus (PVH). However, the physiological importance of GH receptor (GHR) signaling in CRH neurons is currently unknown. Thus, the main objective of the present study was to investigate the consequences of GHR ablation in CRH-expressing cells of male and female mice. GHR ablation in CRH cells did not cause significant changes in body weight, body composition, food intake, substrate oxidation, locomotor activity, glucose tolerance, insulin sensitivity, counterregulatory response to 2-deoxy-D-glucose and ghrelin-induced food intake. However, reduced energy expenditure was observed in female mice carrying GHR ablation in CRH cells. The absence of GHR in CRH cells did not affect anxiety, circadian glucocorticoid levels or restraint-stress-induced corticosterone secretion and activation of PVH neurons in both male and female mice. In summary, GHR ablation, specifically in CRH-expressing neurons, does not lead to major alterations in metabolism, hypothalamic-pituitary-adrenal axis, acute stress response or anxiety in mice. Considering the previous studies showing that central GHR signaling regulates homeostasis in situations of metabolic stress, future studies are still necessary to identify the potential physiological importance of GH action on CRH neurons.
Asunto(s)
Hormona Liberadora de Corticotropina/metabolismo , Neuronas/metabolismo , Receptores de Somatotropina/metabolismo , Animales , Ansiedad/metabolismo , Ritmo Circadiano/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Femenino , Ghrelina/farmacología , Glucosa/metabolismo , Hormona del Crecimiento/farmacología , Homeostasis/efectos de los fármacos , Ratones Noqueados , Neuronas/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/metabolismo , Estrés Fisiológico/efectos de los fármacosRESUMEN
Previous studies indicate that leptin receptor (LepR) expression in GABAergic neurons is necessary for the biological effects of leptin. However, it is not clear whether LepR expression only in GABAergic neurons is sufficient to prevent the metabolic and neuroendocrine imbalances caused by LepR deficiency. In the present study, we produced mice that express the LepR exclusively in GABAergic cells (LepRVGAT mice) and compared them with wild-type (LepR+/+) and LepR-deficient (LepRNull/Null) mice. Although LepRVGAT mice showed a pronounced reduction in body weight and fat mass, as compared with LepRNull/Null mice, male and female LepRVGAT mice exhibited an obese phenotype relative to LepR+/+ mice. Food intake was normalized in LepRVGAT mice; however, LepRVGAT mice still exhibited lower energy expenditure in both sexes and reduced ambulatory activity in the females, compared with LepR+/+ mice. The acute anorexigenic effect of leptin and hedonic feeding were normalized in LepRVGAT mice despite the hyperleptinemia they present. Although LepRVGAT mice showed improved glucose homeostasis compared with LepRNull/Null mice, both male and female LepRVGAT mice exhibited insulin resistance. In contrast, LepR expression only in GABAergic cells was sufficient to normalize the density of agouti-related peptide (AgRP) and α-MSH immunoreactive fibers in the paraventricular nucleus of the hypothalamus. However, LepRVGAT mice exhibited reproductive dysfunctions, including subfertility in males and alterations in the estrous cycle of females. Taken together, our findings indicate that LepR expression in GABAergic cells, although critical to the physiology of leptin, is insufficient to normalize several metabolic aspects and the reproductive function in mice.
Asunto(s)
Metabolismo Energético/genética , Neuronas GABAérgicas/metabolismo , Receptores de Leptina/genética , Reproducción/genética , Animales , Femenino , Ácido Glutámico/metabolismo , Hipotálamo/metabolismo , Leptina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Receptores de Leptina/metabolismoRESUMEN
Leptin is a hormone required for the regulation of body weight in adult animals. However, during the postnatal period, leptin is mostly involved in developmental processes. Because the precise moment at which leptin starts to exert its metabolic effects is not well characterized, our objective was to identify the approximate onset of leptin effects on the regulation of energy balance. We observed that male Lepob/ob mice started to exhibit increased body fat mass from postnatal day 13 (P13), whereas in females, the increase in adiposity began on P20. Daily leptin injections from P10 to P22 did not reduce the weight gain of WT mice. However, an acute leptin injection induced an anorexigenic response in 10-day-old C57BL/6 mice but not in 7-day-old mice. An age-dependent increase in the number of leptin receptor-expressing neurons and leptin-induced pSTAT3 cells was observed in the hypothalamus of P7, P10 and P16 mice. Leptin deficiency started to modulate the hypothalamic expression of transcripts involved in the regulation of metabolism between P7 and P12. Additionally, fasting-induced hypothalamic responses were prevented by leptin replacement in 10-day-old mice. Finally, 12-day-old males and females showed similar developmental timing of axonal projections of arcuate nucleus neurons in both WT and Lepob/ob mice. In summary, we provided a detailed characterization of the onset of leptin's effects on the regulation of energy balance. These findings contribute to the understanding of leptin functions during development.
Asunto(s)
Composición Corporal/efectos de los fármacos , Metabolismo Energético/fisiología , Leptina/metabolismo , Leptina/farmacología , Envejecimiento/efectos de los fármacos , Envejecimiento/fisiología , Animales , Animales Lactantes , Composición Corporal/fisiología , Peso Corporal , Femenino , Desarrollo Fetal , Privación de Alimentos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/fisiología , Hipotálamo/metabolismo , Leptina/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores de Leptina/genética , Receptores de Leptina/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismoRESUMEN
Ghrelin stimulates both GH secretion and food intake. The orexigenic action of ghrelin is mainly mediated by neurons that coexpress agouti-related protein (AgRP) and neuropeptide Y (NPY) in the arcuate nucleus of the hypothalamus (ARH). GH also stimulates food intake and, importantly, ARHAgRP/NPY neurons express GH receptor (GHR). Thus, ghrelin-induced GH secretion may contribute to the orexigenic effect of ghrelin. Here, we investigated the response to ghrelin in male mice carrying GHR ablation specifically in neurons (brain GHR knockout [KO] mice) or exclusively in ARHAgRP/NPY neurons (AgRP GHR KO mice). Although brain GHR KO mice showed normal ghrelin-induced increase in plasma GH levels, these mutants lacked the expected orexigenic response to ghrelin. Additionally, brain GHR KO mice displayed reduced hypothalamic levels of Npy and Ghsr mRNA and did not elicit ghrelin-induced c-Fos expression in the ARH. Furthermore, brain GHR KO mice exhibited a prominent reduction in AgRP fiber density in the ARH and paraventricular nucleus of the hypothalamus (PVH). In contrast, AgRP GHR KO mice showed no changes in the hypothalamic Npy and Ghsr mRNAs and conserved ghrelin-induced food intake and c-Fos expression in the ARH. AgRP GHR KO mice displayed a reduced AgRP fiber density (~16%) in the PVH, but this reduction was less than that observed in brain GHR KO mice (~61%). Our findings indicate that GHR signaling in the brain is required for the orexigenic effect of ghrelin, independently of GH action on ARHAgRP/NPY neurons.
Asunto(s)
Núcleo Arqueado del Hipotálamo/metabolismo , Ingestión de Alimentos/efectos de los fármacos , Ghrelina/farmacología , Hormona del Crecimiento/sangre , Receptores de Somatotropina/genética , Receptores de Somatotropina/fisiología , Proteína Relacionada con Agouti/análisis , Animales , Núcleo Arqueado del Hipotálamo/química , Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuropéptido Y/genética , Núcleo Hipotalámico Paraventricular/química , Proteínas Proto-Oncogénicas c-fos/análisis , ARN Mensajero/análisis , Receptores de Ghrelina/genética , Receptores de Somatotropina/deficiencia , Transducción de Señal/fisiologíaRESUMEN
Arcuate nucleus (ARH) dopaminergic neurones regulate several biological functions, including prolactin secretion and metabolism. These cells are responsive to growth hormone (GH), although it is still unknown whether GH action on ARH dopaminergic neurones is required to regulate different physiological aspects. Mice carrying specific deletion of GH receptor (GHR) in tyrosine hydroxylase (TH)- or dopamine transporter (DAT)-expressing cells were produced. We investigated possible changes in energy balance, glucose homeostasis, fertility, pup survival and restraint stress-induced prolactin release. GHR deletion in DAT- or TH-expressing cells did not cause changes in food intake, energy expenditure, ambulatory activity, nutrient oxidation, glucose tolerance, insulin sensitivity and counter-regulatory response to hypoglycaemia in male and female mice. In addition, GHR deletion in dopaminergic cells caused no gross effects on reproduction and pup survival. However, restraint stress-induced prolactin release was significantly impaired in DAT- and TH-specific GHR knockout male mice, as well as in pegvisomant-treated wild-type males, whereas an intact response was observed in females. Patch clamp recordings were performed in ARH DAT neurones and, in contrast to prolactin, GH did not cause acute changes in the electrical activity of DAT neurones. Furthermore, TH phosphorylation at Ser40 in ARH neurones and median eminence axonal terminals was not altered in DAT-specific GHR knockout male mice during restraint stress. In conclusion, GH action in dopaminergic neurones is required for stress-induced prolactin release in male mice, suggesting the existence of sex differences in the capacity of GHR signalling to affect prolactin secretion. The mechanism behind this regulation still needs to be identified.
Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Prolactina/metabolismo , Receptores de Somatotropina/metabolismo , Estrés Psicológico/metabolismo , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Metabolismo Energético/fisiología , Fertilidad , Glucosa/metabolismo , Hormona de Crecimiento Humana/análogos & derivados , Hormona de Crecimiento Humana/farmacología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratas , Receptores de Somatotropina/genética , Reproducción , Restricción Física , Estrés Psicológico/psicología , Sobrevida , Tirosina 3-Monooxigenasa/metabolismoRESUMEN
During fasting or weight loss, the fall in leptin levels leads to suppression of thyrotropin-releasing hormone (TRH) expression in the paraventricular nucleus of the hypothalamus (PVH) and, consequently, inhibition of the hypothalamic-pituitary-thyroid (HPT) axis. However, differently than rats, just few PVHTRH neurons express the leptin receptor in mice. In the present study, male adult rats and mice were submitted to 48 -h fasting to evaluate the consequences on proTRH peptide expression at the PVH level. Additionally, the proTRH peptide expression was also assessed in the brains of leptin-deficient (Lepob/ob) mice. We observed that approximately 50 % of PVHTRH neurons of leptin-injected rats exhibited phosphorylation of the signal transducer and activator of transcription 3 (pSTAT3), a marker of leptin receptor activation. In contrast, very few PVHTRH neurons of leptin-injected mice exhibited pSTAT3. Rats submitted to 48 -h fasting showed a significant reduction in the number of PVHTRH immunoreactive neurons, as compared to fed rats. On the other hand, no changes in the number of PVHTRH immunoreactive neurons were observed between fasted and fed mice. Next, the number of TRH immunoreactive cells was determined in the PVH, dorsomedial nucleus of the hypothalamus and nucleus raphe pallidus of Lepob/ob and wild-type mice and no significant differences were observed, despite reduced plasma T4 levels in Lepob/ob mice. Taken together, these findings provide additional evidence of the important species-specific differences in the mechanisms used by fasting and/or leptin to regulate the HPT axis.
Asunto(s)
Ayuno/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Hormona Liberadora de Tirotropina/metabolismo , Animales , Leptina/genética , Leptina/metabolismo , Masculino , Ratones , Ratones Transgénicos , Modelos Animales , Neuronas/metabolismo , Núcleo Hipotalámico Paraventricular/citología , Ratas , Especificidad de la Especie , Tiroxina/metabolismoRESUMEN
Growth hormone (GH) is secreted by the pituitary gland, and in addition to its classical functions of regulating height, protein synthesis, tissue growth, and cell proliferation, GH exerts profound effects on metabolism. In this regard, GH stimulates lipolysis in white adipose tissue and antagonizes insulin's effects on glycemic control. During the last decade, a wide distribution of GH-responsive neurons were identified in numerous brain areas, especially in hypothalamic nuclei, that control metabolism. The specific role of GH action in different neuronal populations is now starting to be uncovered, and so far, it indicates that the brain is an important target of GH for the regulation of food intake, energy expenditure, and glycemia and neuroendocrine changes, particularly in response to different forms of metabolic stress such as glucoprivation, food restriction, and physical exercise. The objective of the present review is to summarize the current knowledge about the potential role of GH action in the brain for the regulation of different metabolic aspects. The findings gathered here allow us to suggest that GH represents a hormonal factor that conveys homeostatic information to the brain to produce metabolic adjustments in order to promote energy homeostasis.
Asunto(s)
Hormona del Crecimiento/metabolismo , Metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Glucosa/metabolismo , Humanos , Neuronas/metabolismo , Receptores de Somatotropina/metabolismoRESUMEN
The hypothalamus mediates important exercise-induced metabolic adaptations, possibly via hormonal signals. Hypothalamic leptin receptor (LepR)- and steroidogenic factor 1 (SF1)-expressing neurons are directly responsive to growth hormone (GH) and deletion of GH receptor (GHR) in these cells impairs neuroendocrine responses during situations of metabolic stress. In the present study, we determined whether GHR ablation in LepR- or SF1-expressing cells modifies acute and chronic metabolic adaptations to exercise. Male mice carrying deletion of GHR in LepR- or SF1-expressing cells were submitted to 8 weeks of treadmill running training. Changes in aerobic performance and exercise-induced metabolic adaptations were determined. Mice carrying GHR deletion in LepR cells showed increased aerobic performance after 8 weeks of treadmill training, whereas GHR ablation in SF1 cells prevented improvement in running capacity. Trained mice carrying GHR ablation in SF1 cells exhibited increased fat mass and reduced cross-sectional area of the gastrocnemius muscle. In contrast, deletion of GHR in LepR cells reduced fat mass and increased gastrocnemius muscle hypertrophy, energy expenditure and voluntary locomotor activity in trained mice. Although glucose tolerance was not significantly affected by targeted deletions, glycemia before and immediately after maximum running tests was altered by GHR ablation. In conclusion, GHR signaling in hypothalamic neurons regulates the adaptation capacity to aerobic exercise in a cell-specific manner. These findings suggest that GH may represent a hormonal cue that informs specific hypothalamic neurons to produce exercise-induced acute and chronic metabolic adaptations.