Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1865(11): 158591, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-31863969

RESUMEN

Vitamin A is an essential nutrient, critical for proper embryonic development in mammals. Both embryonic vitamin A-deficiency or -excess lead to congenital malformations or lethality in mammals, including humans. This is due to the defective transcriptional action of retinoic acid, the active form of vitamin A, that regulates in a spatial- and temporal-dependent manner the expression of genes essential for organogenesis. Thus, an adequate supply of vitamin A from the maternal circulation is vital for normal mammalian fetal development. Provitamin A carotenoids circulate in the maternal bloodstream and are available to the embryo. Of all the dietary carotenoids, ß-carotene is the main vitamin A precursor, contributing at least 30% of the vitamin A intake in the industrialized countries and often constituting the sole source of retinoids (vitamin A and its derivatives) in the developing world. In humans, up to 40% of the absorbed dietary ß-carotene is incorporated in its intact form in chylomicrons for distribution to other organs within the body, including the developing tissues. Here, it can serve as a source of vitamin A upon conversion into apocarotenoids by its cleavage enzymes. Given that ß-carotene is carried in the bloodstream by lipoproteins, and that the placenta acquires, assembles and secretes lipoproteins, it is becoming evident that the maternal-fetal transfer of ß-carotene relies on lipoprotein metabolism. Here, we will explore the current knowledge about this important biological process, the cross-talk between carotenoid and lipid metabolism in the context of the maternal-fetal transfer of this provitamin A precursor, and the mechanisms whereby ß-carotene is metabolized by the developing tissues. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.


Asunto(s)
Lipoproteínas/metabolismo , Deficiencia de Vitamina A/metabolismo , Vitamina A/metabolismo , beta Caroteno/metabolismo , Animales , Carotenoides/metabolismo , Desarrollo Embrionario/efectos de los fármacos , Femenino , Humanos , Relaciones Materno-Fetales/efectos de los fármacos , Placenta/efectos de los fármacos , Placenta/metabolismo , Embarazo , Deficiencia de Vitamina A/tratamiento farmacológico , Deficiencia de Vitamina A/genética , beta Caroteno/uso terapéutico
2.
J Biol Chem ; 291(35): 18525-35, 2016 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-27402843

RESUMEN

ß-Carotene is an important source of vitamin A for the mammalian embryo, which depends on its adequate supply to achieve proper organogenesis. In mammalian tissues, ß-carotene 15,15'-oxygenase (BCO1) converts ß-carotene to retinaldehyde, which is then oxidized to retinoic acid, the biologically active form of vitamin A that acts as a transcription factor ligand to regulate gene expression. ß-Carotene can also be cleaved by ß-carotene 9',10'-oxygenase (BCO2) to form ß-apo-10'-carotenal, a precursor of retinoic acid and a transcriptional regulator per se The mammalian embryo obtains ß-carotene from the maternal circulation. However, the molecular mechanisms that enable its transfer across the maternal-fetal barrier are not understood. Given that ß-carotene is transported in the adult bloodstream by lipoproteins and that the placenta acquires, assembles, and secretes lipoproteins, we hypothesized that the aforementioned process requires placental lipoprotein biosynthesis. Here we show that ß-carotene availability regulates transcription and activity of placental microsomal triglyceride transfer protein as well as expression of placental apolipoprotein B, two key players in lipoprotein biosynthesis. We also show that ß-apo-10'-carotenal mediates the transcriptional regulation of microsomal triglyceride transfer protein via hepatic nuclear factor 4α and chicken ovalbumin upstream promoter transcription factor I/II. Our data provide the first in vivo evidence of the transcriptional regulatory activity of ß-apocarotenoids and identify microsomal triglyceride transfer protein and its transcription factors as the targets of their action. This study demonstrates that ß-carotene induces a feed-forward mechanism in the placenta to enhance the assimilation of ß-carotene for proper embryogenesis.


Asunto(s)
Proteínas Portadoras/biosíntesis , Embrión de Mamíferos/metabolismo , Regulación de la Expresión Génica/fisiología , Proteínas Gestacionales/biosíntesis , Embarazo/metabolismo , beta Caroteno/metabolismo , Animales , Transporte Biológico Activo/fisiología , Proteínas Portadoras/genética , Dioxigenasas/genética , Dioxigenasas/metabolismo , Femenino , Ratones , Ratones Noqueados , Embarazo/genética , Proteínas Gestacionales/genética , beta-Caroteno 15,15'-Monooxigenasa/genética , beta-Caroteno 15,15'-Monooxigenasa/metabolismo
3.
FASEB J ; 30(3): 1339-55, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26671999

RESUMEN

We previously defined that the mitochondria-localized PKCδ signaling complex stimulates the conversion of pyruvate to acetyl-coenzyme A by the pyruvate dehydrogenase complex. We demonstrated in vitro and ex vivo that retinol supplementation enhances ATP synthesis in the presence of the PKCδ signalosome. Here, we tested in vivo if a persistent oversupply of retinol would further impair glucose metabolism in a mouse model of diet-induced insulin resistance. We crossed mice overexpressing human retinol-binding protein (hRBP) under the muscle creatine kinase (MCK) promoter (MCKhRBP) with the PKCδ(-/-) strain to generate mice with a different status of the PKCδ signalosome and retinoid levels. Mice with a functional PKCδ signalosome and elevated retinoid levels (PKCδ(+/+)hRBP) developed the most advanced stage of insulin resistance. In contrast, elevation of retinoid levels in mice with inactive PKCδ did not affect remarkably their metabolism, resulting in phenotypic similarity between PKCδ(-/-)hRBP and PKCδ(-/-) mice. Therefore, in addition to the well-defined role of PKCδ in the etiology of metabolic syndrome, we present a novel PKCδ signaling pathway that requires retinol as a metabolic cofactor and is involved in the regulation of fuel utilization in mitochondria. The distinct role in whole-body energy homeostasis establishes the PKCδ signalosome as a promising target for therapeutic intervention in metabolic disorders.


Asunto(s)
Resistencia a la Insulina/fisiología , Obesidad/metabolismo , Proteína Quinasa C-delta/metabolismo , Vitamina A/metabolismo , Animales , Dieta/efectos adversos , Modelos Animales de Enfermedad , Glucosa/metabolismo , Homeostasis/fisiología , Humanos , Masculino , Síndrome Metabólico/metabolismo , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Regiones Promotoras Genéticas/fisiología , Complejo Piruvato Deshidrogenasa/metabolismo , Retinoides/metabolismo , Proteínas de Unión al Retinol/metabolismo , Transducción de Señal/fisiología
4.
J Nutr ; 145(7): 1408-14, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25995275

RESUMEN

BACKGROUND: The vitamin A precursor ß-carotene (BC) promotes mammalian embryonic development by serving as a source of retinoids (vitamin A derivatives) to the developing tissues. In the Western world, increased consumption of dietary supplements, including vitamin A and BC, is common; however, the consequences of maternal high preformed vitamin A intake on embryonic uptake and metabolism of BC are poorly understood. OBJECTIVE: This study investigated vitamin A and BC metabolism in developing mouse tissues after a single BC administration to pregnant wild-type (WT) mice fed purified diets with different vitamin A concentrations. METHODS: WT dams fed a sufficient vitamin A (VA-S; 4.2 µg of retinol/g of diet), high vitamin A (VA-H; 33 µg of retinol/g of diet), or excess vitamin A (VA-E; 66 µg of retinol/g of diet) diet throughout gestation were intraperitoneally injected with BC or vehicle at 13.5 d postcoitum (dpc). At 14.5 dpc, retinoid and BC concentrations in maternal serum and liver, placenta, and embryo were quantified by HPLC; expressions of genes controlling retinoid and BC homeostasis were analyzed by quantitative polymerase chain reaction. Maternal lipoprotein BC concentrations were analyzed by density gradient ultracentrifugation followed by HPLC. RESULTS: Intact BC was undetectable only in embryos from VA-E + BC dams. Relative to the VA-S + vehicle group, placentas from VA-S + BC dams showed 39% downregulation of LDL-receptor-related protein 1 (Lrp1 ); 35% downregulation of VLDL receptor (Vldlr); 56% reduced mRNA expression of ß-carotene 15,15'-oxygenase (Bco1); and 80% upregulation of ß-carotene 9',10'-oxygenase (Bco2). Placental cytochrome P450, family 26, subfamily A, polypeptide 1 (Cyp26A1) was upregulated 2-fold in the VA-E group compared with the VA-S group, regardless of maternal treatment. CONCLUSIONS: In mice, transfer of intact BC to the embryo is attenuated by high tissue vitamin A concentrations. Maternal vitamin A intake and BC availability activate a placental transcriptional response to protect the embryo from retinoid and carotenoid excess.


Asunto(s)
Desarrollo Embrionario/efectos de los fármacos , Vitamina A/administración & dosificación , beta Caroteno/sangre , Animales , Suplementos Dietéticos , Embrión de Mamíferos/metabolismo , Femenino , Regulación de la Expresión Génica , Hígado/química , Fenómenos Fisiologicos Nutricionales Maternos , Intercambio Materno-Fetal , Ratones , Ratones Endogámicos C57BL , Placenta/química , Embarazo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Vitamina A/farmacocinética , beta Caroteno/administración & dosificación , beta Caroteno/farmacocinética
5.
J Nutr ; 144(5): 608-13, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24598882

RESUMEN

Vitamin A deficiency (VAD) is an overwhelming public health problem that affects hundreds of millions of people worldwide. A definitive solution to VAD has yet to be identified. Because it is an essential nutrient, vitamin A or its carotenoid precursor ß-carotene can only be obtained from food or supplements. In this study, we wanted to establish whether ß-carotene produced in the mouse intestine by bacteria synthesizing the provitamin A carotenoid could be delivered to various tissues within the body. To achieve this, we took advantage of the Escherichia coli MG1655*, an intestine-adapted spontaneous mutant of E. coli MG1655, and the plasmid pAC-BETA, containing the genes coding for the 4 key enzymes of the ß-carotene biosynthetic pathway (geranylgeranyl pyrophosphate synthase, phytoene synthase, phytoene desaturase, and lycopene cyclase) from Erwinia herbicola. We engineered the E. coli MG1655* to produce ß-carotene during transformation with pAC-BETA (MG1655*-ßC) and gavaged wild-type and knockout mice for the enzyme ß-carotene 15,15'-oxygenase with this recombinant strain. Various regimens of bacteria administration were tested (single vs. multiple and low vs. high doses). ß-Carotene concentration was measured by HPLC in mouse serum, liver, intestine, and feces. Enumeration of MG1655*-ßC cells in the feces was performed to assess efficiency of intestinal colonization. We demonstrated in vivo that probiotic bacteria could be used to deliver vitamin A to the tissues of a mammalian host. These results have the potential to pave the road for future investigations aimed at identifying alternative, novel approaches to treat VAD.


Asunto(s)
Erwinia/enzimología , Escherichia coli/enzimología , Intestinos/microbiología , Deficiencia de Vitamina A/terapia , Vitamina A/biosíntesis , beta Caroteno/metabolismo , Animales , Carotenoides/metabolismo , Erwinia/genética , Escherichia coli/genética , Heces/microbiología , Femenino , Geranilgeranil-Difosfato Geranilgeraniltransferasa/genética , Geranilgeranil-Difosfato Geranilgeraniltransferasa/metabolismo , Mucosa Intestinal/metabolismo , Liasas Intramoleculares/genética , Liasas Intramoleculares/metabolismo , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Probióticos , Deficiencia de Vitamina A/metabolismo , Deficiencia de Vitamina A/microbiología , beta-Caroteno 15,15'-Monooxigenasa/genética , beta-Caroteno 15,15'-Monooxigenasa/metabolismo
6.
J Nutr ; 142(8): 1456-62, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22739378

RESUMEN

The human diet contains ß-carotene as the most abundant precursor of vitamin A, an essential nutrient for embryogenesis. Our laboratory previously showed the importance of ß-carotene metabolism via ß-carotene-15,15'-oxygenase (CMOI) to support mouse embryonic development. However, the mechanisms regulating embryonic acquisition and utilization of ß-carotene from the maternal circulation via placenta remain unknown. We used wild-type (WT) and Lrat(-/-)Rbp(-/-) (L(-/-)R(-/-)) mice, the latter being a model of marginal vitamin A deficiency. Pregnant dams, fed a nonpurified diet sufficient in vitamin A throughout life, were i.p. supplemented with ß-carotene or vehicle at 13.5 d postcoitum (dpc). Effects of this acute maternal supplementation on retinoid and ß-carotene metabolism in maternal (serum, liver) and developing tissues (placenta, yolk sac, embryo) were investigated at 14.5 dpc. We showed that, upon supplementation, placental ß-carotene concentrations were greater in L(-/-)R(-/-) than in WT mice. However, the retinoid (retinol and retinyl ester) concentrations remained unchanged in placenta (and in all other tissues analyzed) of both genotypes upon ß-carotene administration. We also showed that upon a single i.p. ß-carotene supplementation, placental LDL receptor-related protein (Lrp1) mRNA expression was lower in WT mice, and embryonic CmoI mRNA expression was greater in L(-/-)R(-/-) mice. Together, these data suggest a potential role of LRP1 in mediating the uptake of ß-carotene across the placenta and that even a marginally impaired maternal vitamin A status may influence uptake and utilization of ß-carotene by the placenta and the embryo.


Asunto(s)
Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Placenta/metabolismo , Deficiencia de Vitamina A/metabolismo , beta Caroteno/administración & dosificación , beta Caroteno/metabolismo , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Dieta/veterinaria , Suplementos Dietéticos , Embrión de Mamíferos/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Fenómenos Fisiologicos Nutricionales Maternos , Ratones , Ratones Noqueados , Embarazo , Distribución Aleatoria
7.
Biochim Biophys Acta ; 1821(1): 88-98, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21621637

RESUMEN

The requirement of the developing mammalian embryo for retinoic acid is well established. Retinoic acid, the active form of vitamin A, can be generated from retinol and retinyl ester obtained from food of animal origin, and from carotenoids, mainly ß-carotene, from vegetables and fruits. The mammalian embryo relies on retinol, retinyl ester and ß-carotene circulating in the maternal bloodstream for its supply of vitamin A. The maternal-fetal transfer of retinoids and carotenoids, as well as the metabolism of these compounds in the developing tissues are still poorly understood. The existing knowledge in this field has been summarized in this review in reference to our basic understanding of the transport and metabolism of retinoids and carotenoids in adult tissues. The need for future research on the metabolism of these essential lipophilic nutrients during development is highlighted. This article is part of a Special Issue entitled: Retinoid and Lipid Metabolism.


Asunto(s)
Desarrollo Embrionario , Intercambio Materno-Fetal , Vitamina A/metabolismo , beta Caroteno/metabolismo , Animales , Transporte Biológico , Embrión de Mamíferos/metabolismo , Femenino , Humanos , Absorción Intestinal , Ratones , Ratones Noqueados , Oxigenasas/metabolismo , Embarazo , Proteínas de Unión al Retinol/metabolismo , Tretinoina/metabolismo
8.
J Biol Chem ; 286(37): 32198-207, 2011 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-21795711

RESUMEN

Dietary retinoids (vitamin A and its derivatives) contribute to normal embryonic development. However, the mechanism(s) involved in the transfer of recently ingested vitamin A from mother to embryo is not fully understood. We investigated in vivo whether lipoprotein lipase (LPL) facilitates the placental uptake of dietary retinyl ester incorporated in chylomicrons and their remnants and its transfer to the embryo. We examined the effects of both genetic ablation (MCK-L0 mice) and pharmacological inhibition (P-407) of LPL by maintaining wild type and MCK-L0 mice on diets with different vitamin A content or administering them an oral gavage dose of [(3)H]retinol with or without P-407 treatment. We showed that LPL expressed in placenta facilitates uptake of retinoids by this organ and their transfer to the embryo, mainly through its catalytic activity. In addition, through its "bridging function," LPL can mediate the acquisition of nascent chylomicrons by the placenta, although less efficiently. Quantitative real-time PCR and Western blot analysis showed that placental LPL acts in concert with LDL receptor and LRP1. Finally, by knocking out the retinol-binding protein (RBP) gene in the MCK-L0 background (MCK-L0-RBP(-/-) mice) we demonstrated that the placenta acquires dietary retinoids also via the maternal circulating RBP-retinol complex. RBP expressed in the placenta facilitate the transfer of postprandial retinoids across the placental layers toward the embryo.


Asunto(s)
Suplementos Dietéticos , Lipoproteína Lipasa/biosíntesis , Intercambio Materno-Fetal/fisiología , Placenta/enzimología , Proteínas Gestacionales/biosíntesis , Embarazo/fisiología , Vitamina A/farmacocinética , Vitaminas/farmacocinética , Animales , Quilomicrones/genética , Quilomicrones/metabolismo , Embrión de Mamíferos/enzimología , Femenino , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/genética , Lipoproteína Lipasa/genética , Ratones , Ratones Noqueados , Receptores de LDL/genética , Receptores de LDL/metabolismo , Proteínas de Unión al Retinol/genética , Proteínas de Unión al Retinol/metabolismo , Vitamina A/farmacología , Vitaminas/farmacología
9.
FASEB J ; 25(5): 1641-52, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21285397

RESUMEN

The mammalian embryo relies on maternal circulating retinoids (vitamin A derivatives) for development. ß-Carotene is the major human dietary provitamin A. ß-Carotene-15,15'-oxygenase (CMOI) has been proposed as the main enzyme generating retinoid from ß-carotene in vivo. CMOI is expressed in embryonic tissues, suggesting that ß-carotene provides retinoids locally during development. We performed loss of CMOI function studies in mice lacking retinol-binding protein (RBP), an established model of embryonic vitamin A deficiency (VAD). We show that, unexpectedly, lack of CMOI in the developing tissues further exacerbates the severity of VAD and thus the embryonic malformations of RBP(-/-) mice. Since ß-carotene was not present in any of the mouse diets, we unveiled a novel action of CMOI independent from its ß-carotene cleavage activity. We also show for the first time that CMOI exerts an additional function on retinoid metabolism by influencing retinyl ester formation via modulation of lecithin:retinol acyltransferase (LRAT) activity, at least in developing tissues. Finally, we demonstrate unequivocally that ß-carotene can serve as an alternative vitamin A source for the in situ synthesis of retinoids in developing tissues by the action of CMOI.


Asunto(s)
Embrión de Mamíferos/metabolismo , Retinoides/metabolismo , beta Caroteno/metabolismo , beta-Caroteno 15,15'-Monooxigenasa/metabolismo , Aciltransferasas/metabolismo , Animales , Western Blotting , Cromatografía Líquida de Alta Presión , Embrión de Mamíferos/enzimología , Femenino , Ratones , Ratones Noqueados , Embarazo , Proteínas de Unión al Retinol/genética , Proteínas de Unión al Retinol/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tretinoina/metabolismo , Vitamina A/metabolismo , beta-Caroteno 15,15'-Monooxigenasa/genética
10.
Am J Med Genet A ; 152A(12): 2947-61, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21108385

RESUMEN

Retinoic acid (RA) is a biologically active derivative of vitamin A that is indispensable for inner ear development. The normal function of RA is achieved only at optimal homeostatic concentrations, with an excess or deficiency in RA leading to inner ear dysmorphogenesis. We present an overview of the role of RA in the developing mammalian inner ear, discussing both how and when RA may act to critically control a program of inner ear development. Molecular mechanisms of otic teratogenicity involving two members of the fibroblast growth factor family, FGF3 and FGF10, and their downstream targets, Dlx5 and Dlx6, are examined under conditions of both RA excess and deficiency. We term the effect of too little or too much RA on FGF/Dlx signaling a Goldilocks phenomenon. We demonstrate that in each case (RA excess, RA deficiency), RA can directly affect FGF3/FGF10 signaling within the otic epithelium, leading to downregulated expression of these essential signaling molecules, which in turn, leads to diminution in Dlx5/Dlx6 expression. Non-cell autonomous affects of the otic epithelium subsequently occur, altering transforming growth factor-beta (TGFß) expression in the neighboring periotic mesenchyme and serving as a putative explanation for RA-mediated otic capsule defects. We conclude that RA coordinates inner ear morphogenesis by controlling an FGF/Dlx signaling cascade, whose perturbation by deviations in local retinoid concentrations can lead to inner ear dysmorphogenesis.


Asunto(s)
Oído Interno/embriología , Organogénesis/genética , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo , Tretinoina/metabolismo , Animales , Comunicación Celular/genética , Oído Interno/anomalías , Embrión de Mamíferos , Epitelio/metabolismo , Factor 10 de Crecimiento de Fibroblastos/deficiencia , Factor 10 de Crecimiento de Fibroblastos/genética , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/deficiencia , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Humanos , Mesodermo/metabolismo , Transducción de Señal/genética , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/farmacología , Tretinoina/farmacología
11.
J Lipid Res ; 50(11): 2278-89, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19454764

RESUMEN

Conjugated linoleic acid (CLA) is a polyunsaturated fatty acid obtained from ruminant products. Previous studies in rats and pigs showed that a dietary equimolar mixture of c9,t11 and t10,c12 CLA isomers induces changes in serum and tissue levels of retinoids (vitamin A derivatives). However, the mechanism(s) responsible for these actions remain(s) unexplored. Given the numerous crucial biological functions regulated by retinoids, it is key to establish whether the perturbations in retinoid metabolism induced by dietary CLA mediate some of the beneficial effects associated with intake of this fatty acid or, rather, have adverse consequences on health. To address this important biological question, we began to explore the mechanisms through which dietary CLA alters retinoid metabolism. By using enriched preparations of CLA c9,t11 or CLA t10,c12, we uncoupled the effects of these two CLA isomers on retinoid metabolism. Specifically, we show that both isomers induce hepatic retinyl ester accumulation. However, only CLA t10,c12 enhances hepatic retinol secretion, resulting in increased serum levels of retinol and its specific carrier, retinol-binding protein (RBP). Dietary CLA t10,c12 also redistributes retinoids from the hepatic stores toward the adipose tissue and possibly stimulates hepatic retinoid oxidation. Using mice lacking RBP, we also demonstrate that this key protein in retinoid metabolism mediates hepatic retinol secretion and its redistribution toward fat tissue induced by CLA t10,c12 supplementation.


Asunto(s)
Ácidos Linoleicos Conjugados/administración & dosificación , Hígado/efectos de los fármacos , Hígado/metabolismo , Vitamina A/metabolismo , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Western Blotting , Peso Corporal/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Grasas de la Dieta/administración & dosificación , Ácidos Grasos Insaturados/administración & dosificación , Ácidos Grasos Insaturados/sangre , Ácidos Grasos Insaturados/química , Femenino , Homeostasis/efectos de los fármacos , Ácidos Linoleicos Conjugados/sangre , Ácidos Linoleicos Conjugados/química , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Ratones Noqueados , Prealbúmina/metabolismo , Proteínas de Unión al Retinol/genética , Proteínas de Unión al Retinol/metabolismo , Vitamina A/sangre
12.
J Biol Chem ; 283(9): 5611-21, 2008 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-18093970

RESUMEN

The developing mammalian embryo is entirely dependent on the maternal circulation for its supply of retinoids (vitamin A and its metabolites). The mechanisms through which mammalian developing tissues maintain adequate retinoid levels in the face of suboptimal or excessive maternal dietary vitamin A intake have not been established. We investigated the role of retinyl ester formation catalyzed by lecithin:retinol acyltransferase (LRAT) in regulating retinoid homeostasis during embryogenesis. Dams lacking both LRAT and retinol-binding protein (RBP), the sole specific carrier for retinol in serum, were maintained on diets containing different amounts of vitamin A during pregnancy. We hypothesized that the lack of both proteins would make the embryo more vulnerable to changes in maternal dietary vitamin A intake. Our data demonstrate that maternal dietary vitamin A deprivation during pregnancy generates a severe retinoid-deficient phenotype of the embryo due to the severe retinoid-deficient status of the double mutant dams rather than to the lack of LRAT in the developing tissues. Moreover, in the case of excessive maternal dietary vitamin A intake, LRAT acts together with Cyp26A1, one of the enzymes that catalyze the degradation of retinoic acid, and possibly with STRA6, the recently identified cell surface receptor for retinol-RBP, in maintaining adequate levels of retinoids in embryonic and extraembryonic tissues. In contrast, the pathway of retinoic acid synthesis does not contribute significantly to regulating retinoid homeostasis during mammalian development except under conditions of severe maternal retinoid deficiency.


Asunto(s)
Aciltransferasas/metabolismo , Embrión de Mamíferos/enzimología , Desarrollo Embrionario/fisiología , Homeostasis/fisiología , Embarazo/metabolismo , Vitamina A/metabolismo , Aciltransferasas/genética , Animales , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Embrión de Mamíferos/citología , Desarrollo Embrionario/efectos de los fármacos , Femenino , Intercambio Materno-Fetal/fisiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Embarazo/genética , Ácido Retinoico 4-Hidroxilasa , Proteínas Celulares de Unión al Retinol/genética , Proteínas Celulares de Unión al Retinol/metabolismo , Vitamina A/genética , Vitamina A/farmacología , Deficiencia de Vitamina A/enzimología , Deficiencia de Vitamina A/genética
13.
Kidney Int ; 68(3): 985-97, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16105029

RESUMEN

BACKGROUND: Serum glucocorticoid regulated kinase (SGK-1) is induced in the kidney in diabetes mellitus. However, its role in the proximal tubule is unclear. This study determined the expression and functional role of SGK-1 in PTCs in high glucose conditions. As the epidermal growth factor (EGF) receptor is activated by both EGF and other factors implicated in diabetic nephropathy, the relationship of SGK-1 with EGFR activity was assessed. METHODS: mRNA and protein expression of SGK-1 and mRNA expression of the sodium hydrogen exchanger NHE3 were measured in human PTCs exposed to 5 mmol/L (control) and 25 mmol/L (high) glucose. The effects of SGK-1 on cell growth, apoptosis, and progression through the cell cycle and NHE3 mRNA were examined following overexpression of SGK-1 in PTCs. The role of EGFR activation in observed changes was assessed by phospho-EGFR expression, and response to the EGFR blocker PKI166. SGK-1 expression was then assessed in vivo in a model of streptozotocin-induced diabetes mellitus type 2. RESULTS: A total of 25 mmol/L glucose and EGF (10 ng/mL) increased SGK-1 mRNA (P < 0.005 and P < 0.002, respectively) and protein (both P < 0.02) expression. High glucose and overexpression of SGK-1 increased NHE3 mRNA (P < 0.05) and EGFR phosphorylation (P < 0.01), which were reversed by PKI166. SGK-1 overexpression increased PTC growth (P < 0.0001), progression through the cell cycle (P < 0.001), and increased NHE3 mRNA (P < 0.01), which were all reversed with PKI166. Overexpression of SGK-1 also protected against apoptosis induced in the PTCs (P < 0.0001). Up-regulation of tubular SGK-1 mRNA in diabetes mellitus was confirmed in vivo. Oral treatment with PKI166 attenuated this increase by 51%. No EGF protein was detectable in PTCs, suggestive of phosphorylation of the EGFR by high glucose and downstream induction of SGK-1. CONCLUSION: The effects of high glucose on PTC proliferation, reduced apoptosis and increased NHE3 mRNA levels are mediated by EGFR-dependent up-regulation of SGK-1.


Asunto(s)
Nefropatías Diabéticas/metabolismo , Receptores ErbB/metabolismo , Glucosa/farmacología , Proteínas Inmediatas-Precoces/genética , Túbulos Renales Proximales/enzimología , Proteínas Serina-Treonina Quinasas/genética , Animales , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Nefropatías Diabéticas/fisiopatología , Factor de Crecimiento Epidérmico/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Humanos , Proteínas Inmediatas-Precoces/metabolismo , Túbulos Renales Proximales/efectos de los fármacos , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/análisis , Ratas , Intercambiador 3 de Sodio-Hidrógeno , Intercambiadores de Sodio-Hidrógeno/genética , Intercambiadores de Sodio-Hidrógeno/metabolismo , Regulación hacia Arriba/efectos de los fármacos
14.
Am J Physiol Regul Integr Comp Physiol ; 288(6): R1620-7, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15661964

RESUMEN

During pregnancy, parathyroid hormone-related protein (PTHrP) is one of many growth factors that play important roles to promote fetal growth and development, including stimulation of placental calcium transport. Angiotensin II, acting through the AT(1a) receptor, is also known to promote placental growth. We examined the effects of bilateral uterine artery and vein ligation (restriction), which mimics placental insufficiency in humans, on growth, intrauterine PTHrP, placental AT(1a), and pup calcium. Growth restriction was surgically induced on day 18 of pregnancy in Wistar-Kyoto female rats by uterine vessel ligation. Uteroplacental insufficiency reduced fetal body weight by 15% and litter size (P < 0.001) compared with the control rats with no effect on placental weight or amniotic fluid volume. Uteroplacental insufficiency reduced placental PTHrP content by 46%, with increases in PTHrP (by 2.6-fold), parathyroid hormone (PTH)/PTHrP receptor (by 11.6-fold), and AT(1a) (by 1.7-fold) relative mRNA in placenta following restriction compared with results in control (P < 0.05). There were no alterations in uterine PTHrP and PTH/PTHrP receptor mRNA expression. Maternal and fetal plasma PTHrP and calcium concentrations were unchanged. Although fetal total body calcium was not altered, placental restriction altered perinatal calcium homeostasis, as evidenced by lower pup total body calcium after birth (P < 0.05). The increased uterine and amniotic fluid PTHrP (P < 0.05) may be an attempt to compensate for the induced impaired placental function. The present study demonstrates that uteroplacental insufficiency alters intrauterine PTHrP, placental AT(1a) expression, and perinatal calcium in association with a reduction in fetal growth. Uteroplacental insufficiency may provide an important model for exploring the early origins of adult diseases.


Asunto(s)
Desarrollo Fetal/fisiología , Sustancias de Crecimiento/fisiología , Proteína Relacionada con la Hormona Paratiroidea/metabolismo , Proteína Relacionada con la Hormona Paratiroidea/fisiología , Placenta/fisiología , Útero/fisiología , Líquido Amniótico/metabolismo , Animales , Peso Corporal/fisiología , Calcio/sangre , Calcio/metabolismo , Sondas de ADN , Desoxirribonucleasas/biosíntesis , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Sustancias de Crecimiento/sangre , Sustancias de Crecimiento/metabolismo , Tamaño de los Órganos/fisiología , Proteína Relacionada con la Hormona Paratiroidea/sangre , Insuficiencia Placentaria/fisiopatología , Embarazo , ARN/biosíntesis , ARN Mensajero/biosíntesis , Ratas , Ratas Endogámicas WKY , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
15.
Curr Pharm Des ; 10(27): 3373-84, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15544522

RESUMEN

Ongoing investigation into the relationship between the renin-angiotensin system (RAS) and the progression of diabetic renal disease has persisted for the past two decades. Experimental and clinical evidence suggests that the RAS has a pathogenic role, induced by its haemodynamic and non-haemodynamic mechanisms. The discovery of a local intrarenal RAS provides a rationale for investigating the components of RAS, specifically Angiotensin II (AngII) in the diabetic setting. AngII has multiple effects, including activating intracellular second messengers, transcription factors, extracellular matrix protein and also growth factors and cytokines, which lead to many of the structural and functional changes in the diabetic kidney. The beneficial effects afforded by RAS blockade further implicate AngII in the progression of diabetic nephropathy. Although AngII is a common suspect in the pathogenesis of diabetic nephropathy RAS blockade does not prevent patients from progressing to end stage renal disease. Evaluating other vasoactive factors, which have similar and distinct functions to AngII, will assist in understanding their potential role in the pathogenesis of diabetic nephropathy. A large number of researchers are studying vasoactive factors, however, the case for their role in diabetic nephropathy is inconclusive. Further investigation into the effects of inhibiting vasoactive compounds, including endothelin, urotensin II and vasopeptidases, together with inhibiting RAS, may provide another therapeutic avenue for treating diabetic nephropathy.


Asunto(s)
Nefropatías Diabéticas/patología , Hormonas/fisiología , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Progresión de la Enfermedad , Humanos , Riñón/patología , Péptidos/farmacología , Receptores de Angiotensina/fisiología , Circulación Renal/fisiología , Sistema Renina-Angiotensina/efectos de los fármacos , Sistema Renina-Angiotensina/fisiología
16.
Kidney Int ; 66(5): 1805-14, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15496151

RESUMEN

BACKGROUND: Renal enlargement is an early feature of both human and experimental diabetes. Although the precise mechanisms underlying its development are incompletely understood, locally active growth factors have been suggested to have a key role. Having previously documented increased expression of the proproliferative and antiapoptotic growth factor, epidermal growth factor (EGF), in early diabetes-related kidney growth, the present study sought to evaluate its pathogenetic role by blocking its action with a specific inhibitor. METHODS: Sprague-Dawley rats were randomized to receive streptozotocin (diabetic) or buffer (control) and then further randomized to receive either vehicle or the inhibitor of the EGF receptor tyrosine kinase, PKI 166 (100 mg/kg/day) for 2 days and 3 weeks following streptozotocin administration. RESULTS: Experimental diabetes was associated with an increase in kidney weight and tubular epithelial cell proliferation as identified by increased expression of proliferating cell nuclear antigen (PCNA) and 5-bromo-2'-deoxyuridine (BrdU) incorporation. PKI 166 resulted in a 30% reduction in kidney weight in diabetic rats (P < 0.01) and reduced tubular epithelial cell proliferation (P < 0.01). In addition, EGF receptor inhibition also led to a 40% increase in tubular epithelial cell apoptosis at 3 weeks (P < 0.01). Diabetes-associated glomerular enlargement was similarly attenuated by PKI 166, although glomerular hyperfiltration was unaffected. CONCLUSION: These findings suggest that the EGF-EGF receptor (EGFR) axis has a significant role in the development of early diabetes-related kidney growth. The impact of EGFR inhibition on the later development of renal dysfunction, however, remains to be determined.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Receptores ErbB/antagonistas & inhibidores , Riñón/patología , Pirimidinas/farmacología , Pirroles/farmacología , Animales , Apoptosis/efectos de los fármacos , Bromodesoxiuridina/metabolismo , División Celular/efectos de los fármacos , Línea Celular , Diabetes Mellitus Experimental/fisiopatología , Células Epiteliales/efectos de los fármacos , Tasa de Filtración Glomerular/efectos de los fármacos , Inmunohistoquímica , Riñón/efectos de los fármacos , Riñón/metabolismo , Glomérulos Renales/patología , Masculino , Tamaño de los Órganos/efectos de los fármacos , Antígeno Nuclear de Célula en Proliferación/metabolismo , Ratas , Ratas Sprague-Dawley
17.
Nephrology (Carlton) ; 9(1): 7-13, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14996301

RESUMEN

BACKGROUND AND AIM: Tubular atrophy is a major feature of most renal diseases and is closely associated with the loss of renal function. The present study sought to investigate whether Fas/FasL-induced tubular epithelial cell apoptosis was a feature of experimental diabetic nephropathy. The effects of renoprotective therapy with blockade of the renin-angiotensin (RAS) system were also examined. METHOD: Six-week-old female Ren-2 rats were injected with streptozotocin and maintained diabetic for 12 weeks. Further groups of diabetic rats were treated with the angiotensin-converting enzyme inhibitor, perindopril, for 12 weeks. RESULTS: Widespread apoptosis, identified by using mediated Terminal dUTP nick-end labelling (TUNEL) staining was noted in the tubules of diabetic Ren-2 rats. These changes were associated with an increase in both Fas mRNA and Fas L (ligand) within the tubules (P < 0.01). Treatment of diabetic Ren-2 rats with perindopril (6 mg/kg per day) reduced the apoptosis to control levels and was associated with a reduction in Fas mRNA and Fas L protein (P < 0.05). CONCLUSION: In conclusion, Fas/Fas L-induced tubular apoptosis is a feature of diabetic Ren-2 rats and is attenuated by the blockade of the RAS.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Apoptosis/efectos de los fármacos , Nefropatías Diabéticas/patología , Perindopril/farmacología , Animales , Animales Modificados Genéticamente , Diabetes Mellitus Experimental , Progresión de la Enfermedad , Proteína Ligando Fas , Femenino , Glicoproteínas de Membrana/fisiología , Ratas/genética , Receptor fas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...