Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Res Commun ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727236

RESUMEN

KRAS inhibitors have demonstrated exciting pre-clinical and clinical responses, although resistance occurs rapidly. Here, we investigate the effects of KRAS-targeting therapies on the tumor microenvironment using a library of KRASG12D, p53 mutant, murine PDAC-derived cell lines (KPCY) to leverage immune-oncology combination strategies for long-term tumor efficacy. Our findings show that SOS1 and MEK inhibitors (SOS1i+MEKi) suppressed tumor growth in syngeneic models and increased intra-tumoral CD8+ T cells without durable responses. scRNA-sequencing revealed an increase in inflammatory cancer associated fibroblasts (iCAFs), M2 macrophages, and a decreased dendritic cell quality that ultimately resulted in a highly immunosuppressive microenvironment driven by IL6+ iCAFs. Agonist CD40 treatment was effective to revert macrophage polarization and overcome the lack of mature antigen presenting DCs after SOS1i+MEKi therapy. Treatment increased the overall survival of KPCY tumor-bearing mice. The addition of checkpoint blockade to SOS1i+MEKi combination resulted in tumor free mice with established immune memory. Our data suggests that KRAS inhibition affects myeloid cell maturation and highlights the need for combining KRAS cancer-targeted therapy with myeloid activation to enhance and prolong anti-tumor effects.

2.
Cell ; 174(5): 1293-1308.e36, 2018 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-29961579

RESUMEN

Knowledge of immune cell phenotypes in the tumor microenvironment is essential for understanding mechanisms of cancer progression and immunotherapy response. We profiled 45,000 immune cells from eight breast carcinomas, as well as matched normal breast tissue, blood, and lymph nodes, using single-cell RNA-seq. We developed a preprocessing pipeline, SEQC, and a Bayesian clustering and normalization method, Biscuit, to address computational challenges inherent to single-cell data. Despite significant similarity between normal and tumor tissue-resident immune cells, we observed continuous phenotypic expansions specific to the tumor microenvironment. Analysis of paired single-cell RNA and T cell receptor (TCR) sequencing data from 27,000 additional T cells revealed the combinatorial impact of TCR utilization on phenotypic diversity. Our results support a model of continuous activation in T cells and do not comport with the macrophage polarization model in cancer. Our results have important implications for characterizing tumor-infiltrating immune cells.


Asunto(s)
Neoplasias de la Mama/inmunología , Regulación Neoplásica de la Expresión Génica , Receptores de Antígenos de Linfocitos T/metabolismo , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Microambiente Tumoral/inmunología , Teorema de Bayes , Neoplasias de la Mama/patología , Análisis por Conglomerados , Biología Computacional , Femenino , Perfilación de la Expresión Génica , Humanos , Sistema Inmunológico , Inmunoterapia/métodos , Ganglios Linfáticos , Linfocitos Infiltrantes de Tumor , Macrófagos/metabolismo , Fenotipo , Transcriptoma
3.
Am J Clin Exp Immunol ; 2(2): 172-85, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23885334

RESUMEN

Vascular adhesion protein-1 (VAP-1) has been implicated in the pathogenesis of inflammatory diseases and is suggested to play a role in immune cell trafficking. It is not clear whether this effect is mediated by the oxidase activity or by other features of the protein such as direct adhesion. In order to study the role of VAP-1 oxidase activity in vivo, we have generated mice carrying an oxidase activity-null VAP-1 protein. We demonstrate that the VAP-1 oxidase null mutant mice have a phenotype similar to the VAP-1 null mice in animal models of sterile peritonitis and antibody induced arthritis suggesting that the oxidase activity is responsible for the inflammatory function of VAP-1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...