Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(10)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37240448

RESUMEN

Current worldwide mRNA vaccination against SARS-CoV-2 by intramuscular injection using a needled syringe has greatly protected numerous people from COVID-19. An intramuscular injection is generally well tolerated, safer and easier to perform on a large scale, whereas the skin has the benefit of the presence of numerous immune cells, such as professional antigen-presenting dendritic cells. Therefore, intradermal injection is considered superior to intramuscular injection for the induction of protective immunity, but more proficiency is required for the injection. To improve these issues, several different types of more versatile jet injectors have been developed to deliver DNAs, proteins or drugs by high jet velocity through the skin without a needle. Among them, a new needle-free pyro-drive jet injector has a unique characteristic that utilizes gunpower as a mechanical driving force, in particular, bi-phasic pyrotechnics to provoke high jet velocity and consequently the wide dispersion of the injected DNA solution in the skin. A significant amount of evidence has revealed that it is highly effective as a vaccinating tool to induce potent protective cellular and humoral immunity against cancers and infectious diseases. This is presumably explained by the fact that shear stress generated by the high jet velocity facilitates the uptake of DNA in the cells and, consequently, its protein expression. The shear stress also possibly elicits danger signals which, together with the plasmid DNA, subsequently induces the activation of innate immunity including dendritic cell maturation, leading to the establishment of adaptive immunity. This review summarizes the recent advances in needle-free jet injectors to augment the cellular and humoral immunity by intradermal injection and the possible mechanism of action.


Asunto(s)
COVID-19 , Humanos , Inyecciones Intradérmicas , Inyecciones a Chorro , COVID-19/prevención & control , SARS-CoV-2 , Inyecciones Intramusculares
2.
Cancer Sci ; 114(6): 2499-2514, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36942841

RESUMEN

Cell transfer therapy using mesenchymal stem cells (MSCs) has pronounced therapeutic potential, but concerns remain about immune rejection, emboli formation, and promotion of tumor progression. Because the mode of action of MSCs highly relies on their paracrine effects through secretion of bioactive molecules, cell-free therapy using the conditioned medium (CM) of MSCs is an attractive option. However, the effects of MSC-CM on tumor progression have not been fully elucidated. Herein, we addressed this issue and investigated the possible underlying molecular mechanisms. The CM of MSCs derived from human bone marrow greatly inhibited the in vitro growth of several human tumor cell lines and the in vivo growth of the SCCVII murine squamous cell carcinoma cell line with reduced neovascularization. Exosomes in the MSC-CM were only partially involved in the inhibitory effects. The CM contained a variety of cytokines including insulin-like growth factor binding proteins (IGFBPs). Among them, IGFBP-4 greatly inhibited the in vitro growth of these tumors and angiogenesis, and immunodepletion of IGFBP-4 from the CM significantly reversed these effects. Of note, the CM greatly reduced the phosphorylation of AKT, ERK, IGF-1 receptor beta, and p38 MAPK in a partly IGFBP4-dependent manner, possibly through its binding to IGF-1/2 and blocking the signaling. The CM depleted of IGFBP-4 also reversed the inhibitory effects on in vivo tumor growth and neovascularization. Thus, MSC-CM has potent inhibitory effects on tumor growth and neovascularization in an IGFBP4-dependent manner, suggesting that cell-free therapy using MSC-CM could be a safer promising alternative for even cancer patients.


Asunto(s)
Proteína 4 de Unión a Factor de Crecimiento Similar a la Insulina , Células Madre Mesenquimatosas , Humanos , Ratones , Animales , Proteína 4 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Proteína 4 de Unión a Factor de Crecimiento Similar a la Insulina/farmacología , Medios de Cultivo Condicionados/farmacología , Medios de Cultivo Condicionados/metabolismo , Médula Ósea/metabolismo , Células Madre Mesenquimatosas/metabolismo , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Neovascularización Patológica/metabolismo
3.
Biology (Basel) ; 12(1)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36671815

RESUMEN

Haptens are small molecules that only elicit an immune response when bound to proteins. Haptens initially bind to self-proteins and activate innate immune responses by complex mechanisms via inflammatory cytokines and damage-associated molecular patterns and the subsequent upregulation of costimulatory signals such as cluster of differentiation 86 (CD86) on dendritic cells. Subsequent interactions between CD86 and CD28 on T cells are critically important for properly activating naive T cells and inducing interleukin 2 production, leading to the establishment of adaptive immunity via effector and memory T cells. Accumulating evidence revealed the involvement of haptens in the development of various autoimmune-like diseases such as allergic, inflammatory, and autoimmune diseases including allergic contact dermatitis, atopy, asthma, food allergy, inflammatory bowel diseases, hemolytic anemia, liver injury, leukoderma, and even antitumor immunity. Therefore, the development of in vitro testing alternatives to evaluate in advance whether a substance might lead to the development of these diseases is highly desirable. This review summarizes and discusses recent advances in chemical- and drug-induced allergic, inflammatory, and autoimmune diseases via haptenation and the possible molecular underlying mechanisms, as well as in vitro testing alternatives to evaluate in advance whether a substance might cause the development of these diseases.

4.
ALTEX ; 40(2): 204-216, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35229878

RESUMEN

Although several in vitro assays that predict the sensitizing potential of chemicals have been developed, none can distinguish between chemical respiratory and skin sensitizers. Recently, we established a new three-dimensional dendritic cell (DC) coculture system consisting of a human airway epithelial cell line, immature DCs derived from human peripheral monocytes, and a human lung fibroblast cell line. In this coculture system, compared to skin sensitizers, respiratory sensitizers showed enhanced mRNA expression in DCs of the key costimulatory molecule OX40 ligand (OX40L), which is important for T helper 2 (Th2) cell differentiation. Herein, we established a new two-step DC/T cell coculture system by adding peripheral allogeneic naïve CD4+ T cells to the DCs stimulated in the DC coculture system. In this DC/T cell coculture system, model respiratory sensitizers, but not skin sensitizers, enhanced mRNA expression of the predominant Th2 marker interleukin-4 (IL-4). To improve the versatility, in place of peripheral monocytes, monocyte-derived proliferating cells called CD14-ML were used in the DC coculture system. As in peripheral monocytes, enhanced mRNA expression of OX40L was induced in CD14-ML by respiratory sensitizers compared to skin sensitizers. When these cell lines were applied to the DC/T cell coculture system with peripheral allogeneic naïve CD4+ T cells, respiratory sensitizers but not skin sensitizers enhanced the mRNA expression of IL-4. Thus, this DC/T cell coculture system may be useful for discriminating between respiratory and skin sensitizers by differential mRNA upregulation of IL-4 in T cells.


Asunto(s)
Técnicas de Cocultivo , Interleucina-4 , Células Th2 , Humanos , Diferenciación Celular , Células Cultivadas , Células Dendríticas , Interleucina-4/metabolismo , Interleucina-4/farmacología , Monocitos , ARN Mensajero/metabolismo , Células Th2/metabolismo
5.
Cancer Sci ; 114(1): 34-47, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36000926

RESUMEN

The current success of mRNA vaccines against COVID-19 has highlighted the effectiveness of mRNA and DNA vaccinations. Recently, we demonstrated that a novel needle-free pyro-drive jet injector (PJI) effectively delivers plasmid DNA into the skin, resulting in protein expression higher than that achieved with a needle syringe. Here, we used ovalbumin (OVA) as a model antigen to investigate the potential of the PJI for vaccination against cancers. Intradermal injection of OVA-expression plasmid DNA into mice using the PJI, but not a needle syringe, rapidly and greatly augmented OVA-specific CD8+ T-cell expansion in lymph node cells. Increased mRNA expression of both interferon-γ and interleukin-4 and an enhanced proliferative response of OVA-specific CD8+ T cells, with fewer CD4+ T cells, were also observed. OVA-specific in vivo killing of the target cells and OVA-specific antibody production of both the IgG2a and IgG1 antibody subclasses were greatly augmented. Intradermal injection of OVA-expression plasmid DNA using the PJI showed stronger prophylactic and therapeutic effects against the progression of transplantable OVA-expressing E.G7-OVA tumor cells. Even compared with the most frequently used adjuvants, complete Freund's adjuvant and aluminum hydroxide with OVA protein, intradermal injection of OVA-expression plasmid DNA using the PJI showed a stronger CTL-dependent prophylactic effect. These results suggest that the novel needle-free PJI is a promising tool for DNA vaccination, inducing both a prophylactic and a therapeutic effect against cancers, because of prompt and strong generation of OVA-specific CTLs and subsequently enhanced production of both the IgG2a and IgG1 antibody subclasses.


Asunto(s)
COVID-19 , Vacunas de ADN , Ratones , Humanos , Animales , Inyecciones Intradérmicas , Linfocitos T CD8-positivos , Vacunas contra la COVID-19 , Ovalbúmina , ADN , Inmunoglobulina G , Ratones Endogámicos C57BL
6.
Front Immunol ; 13: 1010700, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36713359

RESUMEN

Pressure ulcers (PUs) are increasing with aging worldwide, but there is no effective causal therapy. Although mesenchymal stem cells (MSCs) promote cutaneous wound healing, the effects of the conditioned medium (CM) of MSCs on cutaneous PU formation induced by ischemia-reperfusion injury have been poorly investigated. To address this issue, herein, we first established an immortalized stem cell line from human exfoliated deciduous teeth (SHED). This cell line was revealed to have superior characteristics in that it grows infinitely and vigorously, and stably and consistently secretes a variety of cytokines. Using the CM obtained from the immortalized SHED cell line, we investigated the therapeutic potential on a cutaneous ischemia-reperfusion mouse model for PU formation using two magnetic plates. This is the first study to show that CM from immortalized SHEDs exerts therapeutic effects on PU formation by promoting angiogenesis and oxidative stress resistance through vascular endothelial growth factor and hepatocyte growth factor. Thus, the CM of MSCs has potent therapeutic effects, whereas these therapies have not been implemented in human medicine. To try to meet the regulatory requirements for manufacturing and quality control as much as possible, it is necessary to produce CM that is consistently safe and effective. The immortalization of stem cells could be one of the breakthroughs to meet the regulatory requirements and consequently open up a novel avenue to create a novel type of cell-free regenerative medicine, although further investigation into the quality control is warranted.


Asunto(s)
Úlcera por Presión , Ratones , Animales , Humanos , Medios de Cultivo Condicionados/farmacología , Medios de Cultivo Condicionados/metabolismo , Úlcera por Presión/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Células Madre/metabolismo , Diente Primario
7.
J Dermatol Sci ; 108(3): 167-177, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36610941

RESUMEN

BACKGROUND: The tyrosinase inhibitor rhododendrol (RD), used as a skin whitening agent, reportedly has the potential to induce leukoderma. OBJECTIVE: Although an immune response toward melanocytes was demonstrated to be involved in leukoderma, the molecular mechanism is not fully understood. METHODS: We hypothesized that if RD is a pro-hapten and tyrosinase-oxidized RD metabolites are melanocyte-specific sensitizers, the sensitizing process could be reproduced by the human cell line activation test (h-CLAT) cocultured with melanocytes (h-CLATw/M) composed of human DC THP-1 cells and melanoma SK-MEL-37 cells. Cell surface expression, ROS generation and ATP release, mRNA expression, and the effects of several inhibitors were examined. RESULTS: When RD was added to the h-CLATw/M, the expression of cell-surface CD86 and IL-12 mRNA was greatly enhanced in THP-1 cells compared with those in the h-CLAT. The rapid death of melanoma cells was induced, with ROS generation and ATP release subsequently being greatly enhanced, resulting in the cooperative upregulation of CD86 and IL-12. Consistent with those observations, an ROS inhibitor, ATP receptor P2X7 antagonist, or PERK inhibitor antagonized the upregulation. CD86 upregulation was similarly observed with another leukoderma-inducible tyrosinase inhibitor, raspberry ketone, but not with the leukoderma noninducible skin-whitening agents ascorbic acid and tranexamic acid. CONCLUSION: RD is a pro-hapten sensitizer dependent on tyrosinase that induces ROS generation and ATP release from melanocytes for CD86 and IL-12 upregulation in DCs, possibly leading to the generation of tyrosinase-specific cytotoxic T lymphocytes. The coculture system h-CLATw/M may be useful for predicting the sensitizing potential to induce leukoderma.


Asunto(s)
Antígeno B7-2 , Butanoles , Hipopigmentación , Preparaciones para Aclaramiento de la Piel , Humanos , Adenosina Trifosfato/metabolismo , Técnicas de Cocultivo , Hipopigmentación/metabolismo , Interleucina-12/metabolismo , Melanocitos/metabolismo , Melanoma/metabolismo , Monofenol Monooxigenasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Preparaciones para Aclaramiento de la Piel/farmacología , Células THP-1/efectos de los fármacos , Regulación hacia Arriba , Antígeno B7-2/metabolismo , Butanoles/farmacología
8.
Front Immunol ; 12: 757669, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34603342

RESUMEN

The interleukin-6 (IL-6)/IL-12 family of cytokines plays critical roles in the induction and regulation of innate and adaptive immune responses. Among the various cytokines, only this family has the unique characteristic of being composed of two distinct subunits, α- and ß-subunits, which form a heterodimer with subunits that occur in other cytokines as well. Recently, we found a novel intracellular role for one of the α-subunits, Epstein-Barr virus-induced gene 3 (EBI3), in promoting the proper folding of target proteins and augmenting its expression at the protein level by binding to its target protein and a well-characterized lectin chaperone, calnexin, presumably through enhancing chaperone activity. Because calnexin is ubiquitously and constitutively expressed but EBI3 expression is inducible, these results could open an avenue to establish a new paradigm in which EBI3 plays an important role in further increasing the expression of target molecules at the protein level in collaboration with calnexin under inflammatory conditions. This theory well accounts for the heterodimer formation of EBI3 with p28, and probably with p35 and p19 to produce IL-27, IL-35, and IL-39, respectively. In line with this concept, another ß-subunit, p40, plays a critical role in the assembly-induced proper folding of p35 and p19 to produce IL-12 and IL-23, respectively. Thus, chaperone-like activities in proper folding and maturation, which allow the secretion of biologically active heterodimeric cytokines, have recently been highlighted. This review summarizes the current understanding of chaperone-like activities of EBI3 to form heterodimers and other associations together with their possible biological implications.


Asunto(s)
Calnexina/fisiología , Inflamación/metabolismo , Interleucinas/fisiología , Antígenos de Histocompatibilidad Menor/fisiología , Chaperonas Moleculares/fisiología , Dimerización , Glicoproteínas/química , Humanos , Interleucinas/química , Proteínas de la Membrana/fisiología , Proteínas de Neoplasias/fisiología , Neoplasias/metabolismo , Neoplasias/patología , Pliegue de Proteína , Mapeo de Interacción de Proteínas , Subunidades de Proteína , Receptores de Interleucina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...