Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Cell Environ ; 40(2): 304-316, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27762444

RESUMEN

A radial oxygen loss (ROL) barrier in roots of waterlogging-tolerant plants promotes oxygen movement via aerenchyma to the root tip, and impedes soil phytotoxin entry. The molecular mechanism and genetic regulation of ROL barrier formation are largely unknown. Zea nicaraguensis, a waterlogging-tolerant wild relative of maize (Zea mays ssp. mays), forms a tight ROL barrier in its roots when waterlogged. We used Z. nicaraguensis chromosome segment introgression lines (ILs) in maize (inbred line Mi29) to elucidate the chromosomal region involved in regulating root ROL barrier formation. A segment of the short-arm of chromosome 3 of Z. nicaraguensis conferred ROL barrier formation in the genetic background of maize. This chromosome segment also decreased apoplastic solute permeability across the hypodermis/exodermis. However, the IL and maize were similar for suberin staining in the hypodermis/exodermis at 40 mm and further behind the root tip. Z. nicaraguensis contained suberin in the hypodermis/exodermis at 20 mm and lignin at the epidermis. The IL with ROL barrier, however, did not contain lignin in the epidermis. Discovery of the Z. nicaraguensis chromosomal region responsible for root ROL barrier formation has improved knowledge of this trait and is an important step towards improvement of waterlogging tolerance in maize.


Asunto(s)
Cromosomas de las Plantas/genética , Sitios Genéticos , Oxígeno/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Poaceae/genética , Poaceae/metabolismo , Lignina/metabolismo , Lípidos/química , Ácido Peryódico/metabolismo , Permeabilidad , Mapeo Físico de Cromosoma , Raíces de Plantas/citología , Poaceae/citología
2.
Plant J ; 80(1): 40-51, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25041515

RESUMEN

Suberin is a complex polymer composed of aliphatic and phenolic compounds. It is a constituent of apoplastic plant interfaces. In many plant species, including rice (Oryza sativa), the hypodermis in the outer part of roots forms a suberized cell wall (the Casparian strip and/or suberin lamellae), which inhibits the flow of water and ions and protects against pathogens. To date, there is no genetic evidence that suberin forms an apoplastic transport barrier in the hypodermis. We discovered that a rice reduced culm number1 (rcn1) mutant could not develop roots longer than 100 mm in waterlogged soil. The mutated gene encoded an ATP-binding cassette (ABC) transporter named RCN1/OsABCG5. RCN1/OsABCG5 gene expression in the wild type was increased in most hypodermal and some endodermal roots cells under stagnant deoxygenated conditions. A GFP-RCN1/OsABCG5 fusion protein localized at the plasma membrane of the wild type. Under stagnant deoxygenated conditions, well suberized hypodermis developed in wild types but not in rcn1 mutants. Under stagnant deoxygenated conditions, apoplastic tracers (periodic acid and berberine) were blocked at the hypodermis in the wild type but not in rcn1, indicating that the apoplastic barrier in the mutant was impaired. The amount of the major aliphatic suberin monomers originating from C(28) and C(30) fatty acids or ω-OH fatty acids was much lower in rcn1 than in the wild type. These findings suggest that RCN1/OsABCG5 has a role in the suberization of the hypodermis of rice roots, which contributes to formation of the apoplastic barrier.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Oryza/genética , Agua/fisiología , Transportadoras de Casetes de Unión a ATP/genética , Transporte Biológico , Membrana Celular/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes Reporteros , Lignina/metabolismo , Lípidos/química , Mutación , Oryza/citología , Oryza/fisiología , Epidermis de la Planta/citología , Epidermis de la Planta/genética , Epidermis de la Planta/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Regiones Promotoras Genéticas/genética , Proteínas Recombinantes de Fusión
3.
Plant Cell Environ ; 37(10): 2406-20, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24506679

RESUMEN

The formation of a barrier to radial oxygen (O2 ) loss (ROL) in the root is an important adaptation of plants to root flooding, but the biochemical changes in plant roots where the barrier is formed are unclear. In this study, we analysed metabolic profiles and gene expression profiles in roots of rice (Oryza sativa L.) plants grown under stagnant deoxygenated conditions, which induce suberization in the outer cell layers of the roots and formation of barrier to ROL. Under these conditions, two distinctive biochemical features of the roots were the accumulations of malic acid and very long chain fatty acids (VLCFAs). We also showed that the expressions of some genes encoding plastid-localized enzymes, which convert malic acid to acetyl coenzyme A (AcCoA), were simultaneously up-regulated under stagnant conditions. The expression levels of these genes in specific root tissues isolated by laser microdissection suggested that malic acid is converted to AcCoA predominantly in the plastids in the outer cell layers of rice roots. We propose that the physiological role of malic acid accumulation in rice roots grown under stagnant conditions is to provide a substrate for the biosynthesis of fatty acids, which, in turn, are used in the biosynthesis of suberin.


Asunto(s)
Adaptación Fisiológica , Oryza/fisiología , Oxígeno/metabolismo , Metabolismo de los Hidratos de Carbono , Ácidos Grasos/metabolismo , Perfilación de la Expresión Génica , Lípidos , Espectroscopía de Resonancia Magnética , Malatos/metabolismo , Redes y Vías Metabólicas , Metabolómica , Microdisección , Análisis de Secuencia por Matrices de Oligonucleótidos , Oryza/citología , Oryza/genética , Raíces de Plantas/citología , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Brotes de la Planta/citología , Brotes de la Planta/genética , Brotes de la Planta/fisiología , Agua/fisiología
4.
J Exp Bot ; 65(1): 261-73, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24253196

RESUMEN

Exposing plants to hypoxic conditions greatly improves their anoxic stress tolerance by enhancing the activities of glycolysis and fermentation in roots. Ethylene may also be involved in these adaptive responses because its synthesis is increased in roots under hypoxic conditions. Here it is reported that pre-treatment of wheat seedlings with an ethylene precursor, 1-aminocyclopropanecarboxylic acid (ACC), enhanced accumulation of ethylene in the roots of wheat seedlings, and enhanced their tolerance of oxygen-deficient conditions through increasing the expression of genes encoding ethanol fermentation enzymes, alcohol dehydrogenase and pyruvate decarboxylase, in the roots. Lysigenous aerenchyma formation in root was induced by ACC pre-treatment and was further induced by growth under oxygen-deficient conditions. ACC pre-treatment increased the expression of three genes encoding respiratory burst oxidase homologue (a plant homologue of gp91(phox) in NADPH oxidase), which has a role in the generation of reactive oxygen species (ROS), in roots of seedlings. Co-treatment with ACC and an NADPH oxidase inhibitor, diphenyleneiodonium, partly suppressed the ACC-induced responses. These results suggest that ethylene and ROS are involved in adaptation of wheat seedlings to oxygen-deficient conditions through controlling lysigenous aerenchyma formation and the expression of genes encoding ethanol fermentation enzymes.


Asunto(s)
Adaptación Fisiológica , Regulación de la Expresión Génica de las Plantas , Oxígeno/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Triticum/fisiología , Alcohol Deshidrogenasa/genética , Aminoácidos Cíclicos/farmacología , Inhibidores Enzimáticos/farmacología , Etilenos/análisis , Etilenos/metabolismo , Fermentación , NADPH Oxidasas/antagonistas & inhibidores , Compuestos Onio/farmacología , Reguladores del Crecimiento de las Plantas/análisis , Proteínas de Plantas/antagonistas & inhibidores , Proteínas de Plantas/genética , Raíces de Plantas/citología , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Piruvato Descarboxilasa/genética , Plantones/citología , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/fisiología , Transducción de Señal , Factores de Tiempo , Triticum/citología , Triticum/genética , Triticum/crecimiento & desarrollo
5.
Front Plant Sci ; 4: 178, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23785371

RESUMEN

Plants that are adapted to waterlogged conditions develop aerenchyma in roots for ventilation. Some wetland plant species also form an apoplastic barrier at the outer cell layers of roots that reduces radial oxygen loss (ROL) from the aerenchyma and prevents toxic compounds from entering the root. The composition of the apoplastic barrier is not well understood. One potential component is suberin, which accumulates at the hypodermal/exodermal cell layers of the roots under waterlogged soil conditions or in response to other environmental stimuli. However, differences in suberin content and composition between plant species make it difficult to evaluate whether suberin has a role in preventing ROL. In this article, we summarize recent advances in understanding apoplastic barrier formation in roots and, between various plant species, compare the chemical compositions of the apoplastic barriers in relation to their permeability to oxygen. Moreover, the relationship between suberin accumulation and the barrier to ROL is discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...