Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 66(2): 1221-1238, 2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36607408

RESUMEN

Probing multiple proprietary pharmaceutical libraries in parallel via virtual screening allowed rapid expansion of the structure-activity relationship (SAR) around hit compounds with moderate efficacy against Trypanosoma cruzi, the causative agent of Chagas Disease. A potency-improving scaffold hop, followed by elaboration of the SAR via design guided by the output of the phenotypic virtual screening efforts, identified two promising hit compounds 54 and 85, which were profiled further in pharmacokinetic studies and in an in vivo model of T. cruzi infection. Compound 85 demonstrated clear reduction of parasitemia in the in vivo setting, confirming the interest in this series of 2-(pyridin-2-yl)quinazolines as potential anti-trypanosome treatments.


Asunto(s)
Enfermedad de Chagas , Tripanocidas , Trypanosoma cruzi , Humanos , Enfermedad de Chagas/tratamiento farmacológico , Quinazolinas/farmacología , Quinazolinas/uso terapéutico , Relación Estructura-Actividad , Tripanocidas/uso terapéutico , Tripanocidas/farmacocinética
2.
RSC Med Chem ; 12(3): 384-393, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-34041487

RESUMEN

An innovative pre-competitive virtual screening collaboration was engaged to validate and subsequently explore an imidazo[1,2-a]pyridine screening hit for visceral leishmaniasis. In silico probing of five proprietary pharmaceutical company libraries enabled rapid expansion of the hit chemotype, alleviating initial concerns about the core chemical structure while simultaneously improving antiparasitic activity and selectivity index relative to the background cell line. Subsequent hit optimization informed by the structure-activity relationship enabled by this virtual screening allowed thorough investigation of the pharmacophore, opening avenues for further improvement and optimization of the chemical series.

3.
Antimicrob Agents Chemother ; 56(2): 960-71, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22143530

RESUMEN

Continued research toward the development of new antifungals that act via inhibition of glycosylphosphatidylinositol (GPI) biosynthesis led to the design of E1210. In this study, we assessed the selectivity of the inhibitory activity of E1210 against Candida albicans GWT1 (Orf19.6884) protein, Aspergillus fumigatus GWT1 (AFUA_1G14870) protein, and human PIG-W protein, which can catalyze the inositol acylation of GPI early in the GPI biosynthesis pathway, and then we assessed the effects of E1210 on key C. albicans virulence factors. E1210 inhibited the inositol acylation activity of C. albicans Gwt1p and A. fumigatus Gwt1p with 50% inhibitory concentrations (IC(50)s) of 0.3 to 0.6 µM but had no inhibitory activity against human Pig-Wp even at concentrations as high as 100 µM. To confirm the inhibition of fungal GPI biosynthesis, expression of ALS1 protein, a GPI-anchored protein, on the surfaces of C. albicans cells treated with E1210 was studied and shown to be significantly lower than that on untreated cells. However, the ALS1 protein levels in the crude extract and the RHO1 protein levels on the cell surface were found to be almost the same. Furthermore, E1210 inhibited germ tube formation, adherence to polystyrene surfaces, and biofilm formation of C. albicans at concentrations above its MIC. These results suggested that E1210 selectively inhibited inositol acylation of fungus-specific GPI which would be catalyzed by Gwt1p, leading to the inhibition of GPI-anchored protein maturation, and also that E1210 suppressed the expression of some important virulence factors of C. albicans, through its GPI biosynthesis inhibition.


Asunto(s)
Aminopiridinas/farmacología , Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Glicosilfosfatidilinositoles/antagonistas & inhibidores , Hifa/efectos de los fármacos , Isoxazoles/farmacología , Acilación/efectos de los fármacos , Candida albicans/crecimiento & desarrollo , Candida albicans/patogenicidad , Candidiasis/microbiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Glicosilfosfatidilinositoles/biosíntesis , Humanos , Hifa/crecimiento & desarrollo , Inositol/metabolismo , Virulencia/efectos de los fármacos , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
4.
Antimicrob Agents Chemother ; 55(10): 4652-8, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21825291

RESUMEN

E1210 is a new antifungal compound with a novel mechanism of action and broad spectrum of antifungal activity. We investigated the in vitro antifungal activities of E1210 compared to those of fluconazole, itraconazole, voriconazole, amphotericin B, and micafungin against clinical fungal isolates. E1210 showed potent activities against most Candida spp. (MIC(90) of ≤0.008 to 0.06 µg/ml), except for Candida krusei (MICs of 2 to >32 µg/ml). E1210 showed equally potent activities against fluconazole-resistant and fluconazole-susceptible Candida strains. E1210 also had potent activities against various filamentous fungi, including Aspergillus fumigatus (MIC(90) of 0.13 µg/ml). E1210 was also active against Fusarium solani and some black molds. Of note, E1210 showed the greatest activities against Pseudallescheria boydii (MICs of 0.03 to 0.13 µg/ml), Scedosporium prolificans (MIC of 0.03 µg/ml), and Paecilomyces lilacinus (MICs of 0.06 µg/ml) among the compounds tested. The antifungal action of E1210 was fungistatic, but E1210 showed no trailing growth of Candida albicans, which has often been observed with fluconazole. In a cytotoxicity assay using human HK-2 cells, E1210 showed toxicity as low as that of fluconazole. Based on these results, E1210 is likely to be a promising antifungal agent for the treatment of invasive fungal infections.


Asunto(s)
Aminopiridinas/farmacología , Antifúngicos/farmacología , Hongos/efectos de los fármacos , Isoxazoles/farmacología , Levaduras/efectos de los fármacos , Aminopiridinas/toxicidad , Anfotericina B/farmacología , Antifúngicos/toxicidad , Aspergillus/efectos de los fármacos , Candida/efectos de los fármacos , Línea Celular , Equinocandinas/farmacología , Fluconazol/farmacología , Fusarium/efectos de los fármacos , Humanos , Isoxazoles/toxicidad , Itraconazol/farmacología , Lipopéptidos/farmacología , Micafungina , Pruebas de Sensibilidad Microbiana , Paecilomyces/efectos de los fármacos , Pseudallescheria/efectos de los fármacos , Pirimidinas/farmacología , Scedosporium/efectos de los fármacos , Triazoles/farmacología , Voriconazol
5.
Antimicrob Agents Chemother ; 55(10): 4543-51, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21788462

RESUMEN

E1210 is a first-in-class, broad-spectrum antifungal with a novel mechanism of action-inhibition of fungal glycosylphosphatidylinositol biosynthesis. In this study, the efficacies of E1210 and reference antifungals were evaluated in murine models of oropharyngeal and disseminated candidiasis, pulmonary aspergillosis, and disseminated fusariosis. Oral E1210 demonstrated dose-dependent efficacy in infections caused by Candida species, Aspergillus spp., and Fusarium solani. In the treatment of oropharyngeal candidiasis, E1210 and fluconazole each caused a significantly greater reduction in the number of oral CFU than the control treatment (P < 0.05). In the disseminated candidiasis model, mice treated with E1210, fluconazole, caspofungin, or liposomal amphotericin B showed significantly higher survival rates than the control mice (P < 0.05). E1210 was also highly effective in treating disseminated candidiasis caused by azole-resistant Candida albicans or Candida tropicalis. A 24-h delay in treatment onset minimally affected the efficacy outcome of E1210 in the treatment of disseminated candidiasis. In the Aspergillus flavus pulmonary aspergillosis model, mice treated with E1210, voriconazole, or caspofungin showed significantly higher survival rates than the control mice (P < 0.05). E1210 was also effective in the treatment of Aspergillus fumigatus pulmonary aspergillosis. In contrast to many antifungals, E1210 was also effective against disseminated fusariosis caused by F. solani. In conclusion, E1210 demonstrated consistent efficacy in murine models of oropharyngeal and disseminated candidiasis, pulmonary aspergillosis, and disseminated fusariosis. These data suggest that further studies to determine E1210's potential for the treatment of disseminated fungal infections are indicated.


Asunto(s)
Antifúngicos/uso terapéutico , Aspergilosis/tratamiento farmacológico , Candidiasis/tratamiento farmacológico , Fusariosis/tratamiento farmacológico , Aminopiridinas/administración & dosificación , Aminopiridinas/farmacología , Aminopiridinas/uso terapéutico , Animales , Antifúngicos/administración & dosificación , Antifúngicos/farmacología , Aspergilosis/microbiología , Aspergillus flavus/efectos de los fármacos , Aspergillus fumigatus/efectos de los fármacos , Candida albicans/efectos de los fármacos , Candida tropicalis/efectos de los fármacos , Candidiasis/microbiología , Femenino , Fusariosis/microbiología , Fusarium/efectos de los fármacos , Isoxazoles/administración & dosificación , Isoxazoles/farmacología , Isoxazoles/uso terapéutico , Ratones , Ratones Endogámicos ICR , Pruebas de Sensibilidad Microbiana
6.
Mol Microbiol ; 48(4): 1029-42, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12753194

RESUMEN

Glycosylphosphatidylinositol (GPI)-anchored cell wall mannoproteins are required for the adhesion of pathogenic fungi, such as Candida albicans, to human epithelium. Small molecular inhibitors of the cell surface presentation of GPI-anchored mannoproteins would be promising candidate drugs to block the establishment of fungal infections. Here, we describe a medicinal genetics approach to identifying the gene encoding a novel target protein that is required for the localization of GPI-anchored cell wall mannoproteins. By means of a yeast cell-based screening procedure, we discovered a compound, 1-[4-butylbenzyl]isoquinoline (BIQ), that inhibits cell wall localization of GPI-anchored mannoproteins in Saccharomyces cerevisiae. Treatment of C. albicans cells with this compound resulted in reduced adherence to a rat intestine epithelial cell monolayer. A previously uncharacterized gene YJL091c, named GWT1, was cloned as a dosage-dependent suppressor of the BIQ-induced phenotypes. GWT1 knock-out cells showed similar phenotypes to BIQ-treated wild-type cells in terms of cell wall structure and transcriptional profiles. Two different mutants resistant to BIQ each contained a single missense mutation in the coding region of the GWT1 gene. These results all suggest that the GWT1 gene product is the primary target of the compound.


Asunto(s)
Candida albicans/efectos de los fármacos , Pared Celular/efectos de los fármacos , Glicosilfosfatidilinositoles/biosíntesis , Isoquinolinas/farmacología , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Candida albicans/metabolismo , Adhesión Celular , Pared Celular/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Inositol/metabolismo , Datos de Secuencia Molecular , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...