Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 13: 876843, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36466234

RESUMEN

Stress-responsive components of the mitochondrial alternative electron transport pathway have the capacity to improve tolerance of plants to abiotic stress, particularly the alternative oxidase AOX1A but also external NAD(P)H dehydrogenases such as NDB2, in Arabidopsis. NDB2 and AOX1A can cooperate to entirely circumvent the classical electron transport chain in Arabidopsis mitochondria. Overexpression of AOX1A or NDB2 alone can have slightly negative impacts on plant growth under optimal conditions, while simultaneous overexpression of NDB2 and AOX1A can reverse these phenotypic effects. We have taken a global transcriptomic approach to better understand the molecular shifts that occur due to overexpression of AOX1A alone and with concomitant overexpression of NDB2. Of the transcripts that were significantly up- or down- regulated in the AOX1A overexpression line compared to wild type (410 and 408, respectively), the majority (372 and 337, respectively) reverted to wild type levels in the dual overexpression line. Several mechanisms for the AOX1A overexpression phenotype are proposed based on the functional classification of these 709 genes, which can be used to guide future experiments. Only 28 genes were uniquely up- or down-regulated when NDB2 was overexpressed in the AOX1A overexpression line. On the other hand, many unique genes were deregulated in the NDB2 knockout line. Furthermore, several changes in transcript abundance seen in the NDB2 knockout line were consistent with changes in the AOX1A overexpression line. The results suggest that an imbalance in AOX1A:NDB2 protein levels caused by under- or over-expression of either component, triggers a common set of transcriptional responses that may be important in mitochondrial redox regulation. The most significant changes were transcripts associated with photosynthesis, secondary metabolism and oxidative stress responses.

2.
Plant Physiol ; 181(2): 774-788, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31409698

RESUMEN

In addition to the classical electron transport pathway coupled to ATP synthesis, plant mitochondria have an alternative pathway that involves type II NAD(P)H dehydrogenases (NDs) and alternative oxidase (AOX). This alternative pathway participates in thermogenesis in select organs of some species and is thought to help prevent cellular damage during exposure to environmental stress. Here, we investigated the function and role of one alternative path component, AtNDB2, using a transgenic approach in Arabidopsis (Arabidopsis thaliana). Disruption of AtNDB2 expression via T-DNA insertion led to a 90% decrease of external NADH oxidation in isolated mitochondria. Overexpression of AtNDB2 led to increased AtNDB2 protein abundance in mitochondria but did not enhance external NADH oxidation significantly unless AtAOX1A was concomitantly overexpressed and activated, demonstrating a functional link between these enzymes. Plants lacking either AtAOX1A or AtNDB2 were more sensitive to combined drought and elevated light treatments, whereas plants overexpressing these components showed increased tolerance and capacity for poststress recovery. We conclude that AtNDB2 is the predominant external NADH dehydrogenase in mitochondria and together with AtAOX1A forms a complete, functional, nonphosphorylating pathway of electron transport, whose operation enhances tolerance to environmental stress. This study demonstrates that at least one of the alternative NDs, as well as AOX, are important for the stress response.


Asunto(s)
Arabidopsis/enzimología , Mitocondrias/enzimología , Proteínas Mitocondriales/metabolismo , NADH Deshidrogenasa/metabolismo , Oxidorreductasas/metabolismo , Proteínas de Plantas/metabolismo , Estrés Fisiológico , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Respiración de la Célula , Proteínas Mitocondriales/genética , NADH Deshidrogenasa/genética , Oxidorreductasas/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...