Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 8(43): 40713-40728, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37929153

RESUMEN

Reduction-sulfurization smelting is an effective method for treating solid hazardous waste and recovering valuable components from them. In this work, a waste hydrogenation catalyst (WHC), an automotive exhaust purifier waste catalyst (AEPWC), a vulcanizer, and laterite nickel ore were mixed, and the reduction smelting behavior of this solid waste was investigated. XRD (X-ray diffractometry), TG-DSC (thermogravimetric/differential scanning calorimetry), SEM-EDS (scanning electron microscopy-energy dispersive spectroscopy), OM (optical microscopy), and ICP-OES (inductively coupled plasma-optical emission spectrometry) methods were used to examine the chemical composition, thermal stability, structure, and morphology, as well as the metal content of the samples. Under the Al2O3-FeO-SiO2 ternary slag system, at a smelting temperature of 1450 °C, smelting time of 2 h, mass ratio of coke, pyrite, and CaO to waste catalysts of 16, 25, and 0%, respectively, nickel (Ni) and molybdenum (Mo) recovery reached 91.1 and 92.9%, respectively, where average PGMs (platinum group metals, platinum (Pt), palladium (Pd), rhodium (Rh)) recovery reached 96%, although vanadium (V) recovery was only 25.1%. The characterization of the slag shows that Al, Si, and Fe are mainly bound in the form of chemical compounds, while V is intercalated with ferro- or aluminosilicate, which hinders the reduction and sulfurization of V. A series of tests using reduction smelting without sulfurization were also conducted, after which the Ni, Mo, and V recovery reached 96.8, 96.6, and 89.7%, respectively, while PGMs (Pt, Pd, Rh) recovery ranges from 90.2 to 98.0%. The collaborative disposal of primary ore and multisource solid waste has been achieved through two process paths: reducing smelting and reducing sulfurization smelting, which provide reference for the collaborative smelting of multisource secondary resources.

2.
Adv Colloid Interface Sci ; 309: 102778, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36209685

RESUMEN

The electroacoustic technique has been successfully used to determine the zeta potential of concentrated aqueous suspensions for over thirty years. This article reviews its use in mineral processing, ceramics, zeolites, and other industrial minerals and in particular identifies the isoelectric points of these materials, as this parameter is crucial for determining colloidal stability and hence subsequent processing. Some benefits of this technique over the traditional electrokinetic measurement techniques are also highlighted. Finally, the application of the technique to polymer lattices is summarized.


Asunto(s)
Zeolitas , Suspensiones , Agua , Polímeros
3.
Adv Colloid Interface Sci ; 308: 102769, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36116142

RESUMEN

Despite various initiatives and efforts, plastic solid waste (PSW) has become a major global problem due to decades of relentless use of plastics. Since non-biodegradable plastics can persist in the environment for hundreds of years, threatening animal and human life, discarding them into the environment is not a viable option. Plastic recycling is a critical research area that requires urgent attention since less than 10% of the seven billion tons of globally generated plastic waste has been recycled so far. With recent technological developments, it is now possible to recycle many types of PSW using a variety of methods. This review provides an overview of the froth flotation technology that is currently being researched for PSW recycling. Fundamental working principles, the current state of the development, and limitations of this technique are reviewed. It is suggested that froth flotation with continuous development has tremendous potential to result in a more efficient and environmentally friendly approach to PSW recycling.


Asunto(s)
Plásticos , Eliminación de Residuos , Humanos , Reciclaje/métodos , Eliminación de Residuos/métodos , Residuos Sólidos
4.
Adv Colloid Interface Sci ; 279: 102142, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32244063

RESUMEN

The rare-earth elements (REE), which encompass the fifteen metallic elements of the lanthanoid series of the periodic table, yttrium and occasionally scandium, have gained enormous public, economic and scientific attention in recent years. These elements, which have been found in over 250 minerals, are of high economic and strategic importance to many high-technology industries. As such they have been designated as critical materials by several countries and many new deposits are being developed. Rare-earth mineral (REM) deposits can be broadly classified into four geological environments: carbonates, alkaline/peralkaline igneous rocks, placers and ion adsorption clays. Apart from ion adsorption clay deposits, which require no mineral processing steps, froth flotation is the most applied beneficiation technique. This paper reviews the flotation of REM, covering their surface chemical properties as well as the various flotation reagents which have been employed.

5.
Acta Biomater ; 10(7): 3317-26, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24681371

RESUMEN

Owing to their adjustable dissolution properties, phosphate-based glasses (PGs) are promising materials for the controlled release of bioinorganics, such as copper ions. This study describes a vapour sorption method that allowed for the investigation of the kinetics and mechanisms of aqueous interactions of PGs of the formulation 50P2O5-30CaO-(20-x)Na2O-xCuO (x=0, 1, 5 and 10mol.%). Initial characterization was performed using (31)P magic angle spinning nuclear magnetic resonance and attenuated total reflectance-Fourier transform infrared spectroscopy. Increasing CuO content resulted in chemical shifts of the predominant Q(2) NMR peak and of the (POP)as and (PO(-)) Fourier transform infrared absorptions, owing to the higher strength of the POCu bond compared to PONa. Vapour sorption and desorption were gravimetrically measured in PG powders exposed to variable relative humidity (RH). Sorption was negligible below 70% RH and increased exponentially with RH from 70 to 90%, where it exhibited a negative correlation with CuO content. Vapour sorption in 0% and 1% CuO glasses resulted in phosphate chain hydration and hydrolysis, as evidenced by protonated Q(0)(1H) and Q(1)(1H) species. Dissolution rates in deionized water showed a linear correlation (R(2)>0.99) with vapour sorption. Furthermore, cation release rates could be predicted based on dissolution rates and PG composition. The release of orthophosphate and short polyphosphate species corroborates the action of hydrolysis and was correlated with pH changes. In conclusion, the agreement between vapour sorption and routine characterization techniques in water demonstrates the potential of this method for the study of PG aqueous reactions.


Asunto(s)
Cobre/química , Gases/química , Fosfatos/química , Agua/química , Espectroscopía de Resonancia Magnética , Microscopía Electrónica de Rastreo , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier
6.
J Colloid Interface Sci ; 329(1): 167-72, 2009 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-18950784

RESUMEN

In this study, microwave irradiation is used to modify ilmenite surface chemistry to enhance the adsorption of surfactants and the air bubble attachment. The results indicate that microwave irradiation can increase ilmenite flotation recovery by 20%. A positron emission particle tracking technique is used to study the dynamic behaviour of ilmenite particles in a Denver cell. The data shows that the poor flotation recovery of ilmenite is not only due to the reduce probability of ilmenite being captured by air bubbles, but also the short residence time of the particles remaining in the froth phase. The ilmenite particles can be frequently captured by air bubbles, but dropped to the bulk liquid from the froth phase, normally over 15 s. Microwave irradiation changes the ilmenite flow pattern in the Denver cell. The average time of ilmenite remaining in froth phase is increased from 11.5 to 29.1 s.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...