Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 129(3): 1314-1328, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30776026

RESUMEN

It is widely believed that protection against acquisition of HIV or SIV infection requires anti-envelope (anti-Env) antibodies, and that cellular immunity may affect viral loads but not acquisition, except in special cases. Here we provide evidence to the contrary. Mucosal immunization may enhance HIV vaccine efficacy by eliciting protective responses at portals of exposure. Accordingly, we vaccinated macaques mucosally with HIV/SIV peptides, modified vaccinia Ankara-SIV (MVA-SIV), and HIV-gp120-CD4 fusion protein plus adjuvants, which consistently reduced infection risk against heterologous intrarectal SHIVSF162P4 challenge, both high dose and repeated low dose. Surprisingly, vaccinated animals exhibited no anti-gp120 humoral responses above background and Gag- and Env-specific T cells were induced but failed to correlate with viral acquisition. Instead, vaccine-induced gut microbiome alteration and myeloid cell accumulation in colorectal mucosa correlated with protection. Ex vivo stimulation of the myeloid cell-enriched population with SHIV led to enhanced production of trained immunity markers TNF-α and IL-6, as well as viral coreceptor agonist MIP1α, which correlated with reduced viral Gag expression and in vivo viral acquisition. Overall, our results suggest mechanisms involving trained innate mucosal immunity together with antigen-specific T cells, and also indicate that vaccines can have critical effects on the gut microbiome, which in turn can affect resistance to infection. Strategies to elicit similar responses may be considered for vaccine designs to achieve optimal protective efficacy.


Asunto(s)
Vacunas contra el SIDA/inmunología , Síndrome de Inmunodeficiencia Adquirida/inmunología , VIH-1/inmunología , Inmunidad Mucosa , Mucosa Intestinal/inmunología , Vacunas contra el SIDAS/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Síndrome de Inmunodeficiencia Adquirida/patología , Síndrome de Inmunodeficiencia Adquirida/prevención & control , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/patología , Colon/inmunología , Colon/patología , Inmunidad Celular , Mucosa Intestinal/patología , Macaca mulatta , Recto/inmunología , Recto/patología , Síndrome de Inmunodeficiencia Adquirida del Simio/patología , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control
2.
Eur J Pharm Sci ; 129: 58-67, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30521945

RESUMEN

Reducing the dosing frequency of corticosteroids may increase compliance and increase pulmonary targeting. The objective of this study was to evaluate whether a high molecular weight dextran-budesonide conjugate might be suitable for pulmonary slow release of the otherwise fast absorbed budesonide. An array of dextran-spacer-budesonide conjugates was prepared that differed in the molecular weight of dextran (20 kDa or 40 kDa) and the length of the dicarboxylic spacer (succinic, glutaric, and adipic anhydride). The conjugates were characterized for identity by proton nuclear magnetic resonance (1H NMR) and Fourier-transform infrared spectroscopy (FTIR), the degree of dextran-hydroxyl conjugation, purity, and physiological activation (release of budesonide). The 40 kDa dextran-succinate-budesonide conjugate was formulated as a dry powder for pulmonary delivery and characterized for particle size distribution, particle morphology, and aerodynamic particle size. The degree of substitution (grams of budesonide in 100 g of conjugate) ranged from 4 to 10% for all six dextran-spacer-budesonide conjugates. Incubation at 37 °C and pH 7.4 in phosphate buffered saline resulted in release of 25-75% of the conjugated budesonide over an 8-hour period with the rate of release increasing with molecular weight of dextran and the length of the spacer. Modeling of the concentration time profiles of the released budesonide and budesonide-21-hemisucinate in phosphate buffered saline, suggested that budesonide is generated either directly or via the budesonide-21-hemisucinate pre-cursor. Data also suggested that the rate of budesonide generation likely depends on the position of budesonide on the dextran molecule. Spray-drying the 40 kDa dextran-succinate-budesonide produced respirable particles of the conjugate with a mass median aerodynamic particle size (MMAD) of 4 µm. The slow generation of budesonide from the chemical delivery system might further improve the pharmacological profile of budesonide.


Asunto(s)
Budesonida/química , Dextranos/química , Profármacos/química , Administración por Inhalación , Aerosoles/química , Portadores de Fármacos/química , Pulmón/efectos de los fármacos , Peso Molecular , Tamaño de la Partícula , Polvos/química , Terapia Respiratoria/métodos
3.
Nat Med ; 18(8): 1291-6, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22797811

RESUMEN

Both rectal and vaginal mucosal surfaces serve as transmission routes for pathogenic microorganisms. Vaccination through large intestinal mucosa, previously proven protective for both of these mucosal sites in animal studies, can be achieved successfully by direct intracolorectal (i.c.r.) administration, but this route is clinically impractical. Oral vaccine delivery seems preferable but runs the risk of the vaccine's destruction in the upper gastrointestinal tract. Therefore, we designed a large intestine-targeted oral delivery with pH-dependent microparticles containing vaccine nanoparticles, which induced colorectal immunity in mice comparably to colorectal vaccination and protected against rectal and vaginal viral challenge. Conversely, vaccine targeted to the small intestine induced only small intestinal immunity and provided no rectal or vaginal protection, demonstrating functional compartmentalization within the gut mucosal immune system. Therefore, using this oral vaccine delivery system to target the large intestine, but not the small intestine, may represent a feasible new strategy for immune protection of rectal and vaginal mucosa.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Intestino Grueso , Recto/inmunología , Virus Vaccinia/inmunología , Vaccinia/prevención & control , Vagina/inmunología , Vacunas Virales/administración & dosificación , Adyuvantes Inmunológicos , Administración Oral , Secuencia de Aminoácidos , Animales , Linfocitos T CD8-positivos/inmunología , Femenino , Inmunidad Mucosa , Intestino Grueso/virología , Ácido Láctico , Lipopéptidos , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Nanopartículas , Oligodesoxirribonucleótidos/administración & dosificación , Oligodesoxirribonucleótidos/inmunología , Especificidad de Órganos , Ovario/virología , Poli I-C , Ácido Poliglicólico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ácidos Polimetacrílicos , Organismos Libres de Patógenos Específicos , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/farmacocinética , Vaccinia/inmunología , Virus Vaccinia/aislamiento & purificación , Carga Viral , Vacunas Virales/inmunología , Vacunas Virales/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...