Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Anim Microbiome ; 6(1): 52, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39304935

RESUMEN

BACKGROUND: Feed costs account for a high proportion of the variable cost of beef production, ultimately impacting overall profitability. Thus, improving feed efficiency of beef cattle, by way of determining the underlying genomic control and selecting for feed efficient cattle provides a method through which feed input costs may be reduced whilst also contributing to the environmental sustainability of beef production. The rumen microbiome dictates the feed degradation capacity and consequent nutrient supply in ruminants, thus potentially impacted by feed efficiency phenotype. Equally, liver tissue has been shown to be responsive to feed efficiency phenotype as well as dietary intake. However, although both the rumen microbiome and liver transcriptome have been shown to be impacted by host feed efficiency phenotype, knowledge of the interaction between the rumen microbiome and other peripheral tissues within the body, including the liver is lacking. Thus, the objective of this study was to compare two contrasting breed types (Charolais and Holstein-Friesian) divergent for residual feed intake (RFI) over contrasting dietary phases (zero-grazed grass and high-concentrate), based on gene co-expression network analysis of liver transcriptome data and microbe co-abundance network of rumen microbiome data. Traits including RFI, dry matter intake (DMI) and growth rate (ADG), as well as rumen concentrations of volatile fatty acids were also included within the network analysis. RESULTS: Overall, DMI had the greatest number of connections followed by RFI, with ADG displaying the fewest number of significant connections. Hepatic genes related to lipid metabolism were correlated to both RFI and DMI phenotypes, whilst genes related to immune response were correlated to DMI. Despite the known relationship between RFI and DMI, the same microbes were not directly connected to these phenotypes, the Succiniclasticum genus was however, negatively connected to both RFI and ADG. Additionally, a stepwise regression analysis revealed significant roles for both Succiniclasticum genus and Roseburia.faecis sp. in predicting RFI, DMI and ADG. CONCLUSIONS: Results from this study highlight the interactive relationships between rumen microbiome and hepatic transcriptome data of cattle divergent for RFI, whilst also increasing our understanding of the underlying biology of both DMI and ADG in beef cattle.

2.
Front Microbiol ; 15: 1359611, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38737409

RESUMEN

Introduction: Neonatal calf diarrhea is a multifactorial condition that occurs in early life when calves are particularly susceptible to enteric infection and dysbiosis of the gut microbiome. Good calf health is dependent on successful passive transfer of immunity from the dam through colostrum. There are limited studies on the developing gut microbiota from birth to weaning in calves. Methodology: Therefore, the objective of this study was to examine the effect of immune status and diarrheal incidence on the development of the fecal microbiota in Jersey (n = 22) and Holstein (n = 29) heifer calves throughout the pre-weaning period. Calves were hand-fed a colostrum volume equivalent to 8.5% of their birthweight, from either the calf's dam (n = 28) or re-heated mixed colostrum (≤2 cows, ≤1d; n = 23) within 2 h of birth. All calves were clinically assessed using a modified Wisconsin-Madison calf health scoring system and rectal temperature at day (d) 0, d7, d21, or disease manifestation (DM) and weaning (d83). Weights were recorded at d0, d21, and d83. Calf blood samples were collected at d7 for the determination of calf serum IgG (sIgG). Fecal samples were obtained at d7, d21/DM [mean d22 (SE 0.70)], and at weaning for 16S rRNA amplicon sequencing of the fecal microbiota. Data were processed in R using DADA2; taxonomy was assigned using the SILVA database and further analyzed using Phyloseq and MaAsLin 2. Results and discussion: Significant amplicon sequence variants (ASVs) and calf performance data underwent a Spearman rank-order correlation test. There was no effect (p > 0.05) of colostrum source or calf breed on serum total protein. An effect of calf breed (p < 0.05) was observed on sIgG concentrations such that Holstein calves had 6.49 (SE 2.99) mg/ml higher sIgG than Jersey calves. Colostrum source and calf breed had no effect (p > 0.05) on health status or the alpha diversity of the fecal microbiota. There was a relationship between health status and time interaction (p < 0.001), whereby alpha diversity increased with time; however, diarrheic calves had reduced microbial diversity at DM. No difference (p > 0.05) in beta diversity of the microbiota was detected at d7 or d83. At the genus level, 33 ASVs were associated (adj.p < 0.05) with health status over the pre-weaning period.

3.
Sci Total Environ ; 926: 171808, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38508273

RESUMEN

Enteric methane (CH4) produced by ruminant livestock is a potent greenhouse gas and represents significant energy loss for the animal. The novel application of oxidising compounds as antimethanogenic agents with future potential to be included in ruminant feeds, was assessed across two separate experiments in this study. Low concentrations of oxidising agents, namely urea hydrogen peroxide (UHP) with and without potassium iodide (KI), and magnesium peroxide (MgO2), were investigated for their effects on CH4 production, total gas production (TGP), volatile fatty acid (VFA) profiles, and nutrient disappearance in vitro using the rumen simulation technique. In both experiments, the in vitro diet consisted of 50:50 grass silage:concentrate on a dry matter basis. Treatment concentrations were based on the amount of oxygen delivered and expressed in terms of fold concentration. In Experiment 1, four treatments were tested (Control, 1× UHP + KI, 1× UHP, and 0.5× UHP + KI), and six treatments were assessed in Experiment 2 (Control, 0.5× UHP + KI, 0.5× UHP, 0.25× UHP + KI, 0.25× UHP, and 0.12× MgO2). All treatments in this study had a reducing effect on CH4 parameters. A dose-dependent reduction of TGP and CH4 parameters was observed, where treatments delivering higher levels of oxygen resulted in greater CH4 suppression. 1× UHP + KI reduced TGP by 28 % (p = 0.611), CH4% by 64 % (p = 0.075) and CH4 mmol/g digestible organic matter by 71 % (p = 0.037). 0.12× MgO2 reduced CH4 volume by 25 % (p > 0.05) without affecting any other parameters. Acetate-to-propionate ratios were reduced by treatments in both experiments (p < 0.01). Molar proportions of acetate and butyrate were reduced, while propionate and valerate were increased in UHP treatments. High concentrations of UHP affected the degradation of neutral detergent fibre in the forage substrate. Future in vitro work should investigate alternative slow-release oxygen sources aimed at prolonging CH4 suppression.


Asunto(s)
Propionatos , Rumen , Animales , Femenino , Propionatos/metabolismo , Metano/metabolismo , Óxido de Magnesio/metabolismo , Dieta , Ensilaje/análisis , Rumiantes , Acetatos/metabolismo , Oxígeno/metabolismo , Alimentación Animal/análisis , Fermentación , Digestión , Lactancia
4.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38206107

RESUMEN

Research into the potential use of various dietary feed supplements to reduce methane (CH4) production from ruminants has proliferated in recent years. In this study, two 8-wk long experiments were conducted with mature ewes and incorporated the use of a variety of natural dietary feed supplements offered either independently or in combination. Both experiments followed a randomized complete block design. Ewes were offered a basal diet in the form of ad libitum access to grass silage supplemented with 0.5 kg concentrates/ewe/d. The entire daily dietary concentrate allocation, incorporating the respective feed supplement, was offered each morning, and this was followed by the daily silage allocation. In experiment 1, the experimental diets contained 1) no supplementation (CON), 2) Ascophyllum nodosum (SW), 3) A. nodosum extract (EX1), 4) a blend of garlic and citrus extracts (GAR), and 5) a blend of essential oils (EO). In experiment 2, the experimental diets contained 1) no supplementation (CON), 2) A. nodosum extract (EX2), 3) soya oil (SO), and 4) a combination of EX2 and SO (EXSO). Twenty ewes per treatment were individually housed during both experiments. Methane was measured using portable accumulation chambers. Rumen fluid was collected at the end of both experiments for subsequent volatile fatty acid (VFA) and ammonia analyses. Data were analyzed using mixed models ANOVA (PROC MIXED, SAS v9.4). Statistically significant differences between treatment means were considered when P < 0.05. Dry matter intake was not affected by diet in either experiment (P > 0.05). Ewes offered EO tended to have an increased feed:gain ratio relative to CON (P < 0.10) and SO tended to increase the average daily gain (P < 0.10) which resulted in animals having a higher final body weight (P < 0.05) than CON. Ewes offered EX1 and SO emitted 9% less CH4 g/d than CON. The only dietary treatment to have an effect on rumen fermentation variables relative to CON was SW, which enhanced total VFA production (P < 0.05). In conclusion, the A. nodosum extract had inconsistent results on CH4 emissions whereby EX1 reduced CH4 g/d while EX2 had no mitigating effect on CH4 production, likely due to the differences in PT content reported for EX1 and EX2. SO was the only dietary feed supplement assessed in the current study that enhanced animal performance whilst mitigating daily CH4 production.


Reducing methane emissions from agriculture is vital to minimize the effects of global warming and to meet greenhouse gas reduction targets set by EU policy. In this experiment, a range of natural feed supplements were offered to mature ewes through the concentrated portion of their diet. Soya oil and brown seaweed extract reduced daily methane emissions by 9% when offered independently of each other; however, no reduction in methane was observed when combined. Additionally, inclusion of soya oil improved animal weight gain. Results from the current experiment may contribute to the development of a targeted dietary strategy to reduce methane emissions from livestock.


Asunto(s)
Dieta , Metano , Ovinos , Animales , Femenino , Metano/metabolismo , Dieta/veterinaria , Suplementos Dietéticos/análisis , Rumiantes , Ensilaje/análisis , Ácidos Grasos Volátiles/metabolismo , Rumen/metabolismo , Aceite de Soja/metabolismo , Extractos Vegetales , Fermentación , Alimentación Animal/análisis , Lactancia , Digestión
5.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38038711

RESUMEN

There is an urgent requirement internationally to reduce enteric methane (CH4) emissions from ruminants to meet greenhouse gas emissions reduction targets. Dietary supplementation with feed additives is one possible strategy under investigation as an effective solution. The effects of the CH4 inhibitor 3-nitrooxypropanol (3-NOP) at reducing CH4 emissions in beef have been shown mainly in adult cattle consuming backgrounding and high-energy finishing diets. In this study, the effects of dietary supplementation of young growing (≤6 mo) beef cattle with 3-NOP were examined in a 50:50 forage:concentrate diet. A total of 68 Dairy × Beef (Aberdeen Angus and Hereford dairy cross) male calves (≤6 mo of age at the start of experiment, body weight: 147 ±â€…38 kg) underwent a 3-wk acclimatization period and were then assigned to one of two treatments in a completely randomized block design. Dietary treatments were (1) control, placebo (no 3-NOP), and (2) 3-NOP applied at 150 mg kg-1 DM. Calves were fed a partial mixed ration for 12 wk. Body weight was recorded weekly and feed intake daily using the Calan Broadbent feeding system. Methane and hydrogen emissions were measured using the GreenFeed system. Total weight gained, dry matter intake (DMI), and average daily gain were not affected by 3-NOP (P > 0.05) supplementation. On average, the inclusion of 3-NOP decreased (P < 0.001) CH4 emissions: g d-1; g kg-1 DMI; by 30.6% and 27.2%, respectively, during the study with a greater reduction occurring over time. Incorporating 3-NOP into beef cattle diets is an efficient solution to decrease CH4 emissions during indoor feeding and when offered 50:50 forage:concentrate diet.


Enteric methane (CH4) is a by-product from the fermentation of feed in the digestive tract of cattle. The production of CH4 is responsible for the loss of 2% to 12% of the animal's gross energy intake. A potent greenhouse gas, CH4 from ruminant systems accounts for 30% of international anthropogenic CH4 emissions. As a result, a significant effort has been made internationally to reduce CH4 emissions from ruminants in order to achieve reductions in global greenhouse gas emissions. The supplementation of additives in the feed has been demonstrated to be an effective strategy in reducing CH4 emitted from livestock. The purpose of this research was to investigate the effects of supplementing young growing cattle with the CH4 inhibitor, 3-nitrooxypropanol (3-NOP), consuming a 50:50 forage:concentrate diet. A total of 68 Dairy × Beef (Aberdeen Angus and Hereford dairy cross) male calves (≤6 mo of age at the start of the experiment) were assigned to one of two treatments: control (no 3-NOP) and 3-NOP. Animals received their diets for 12 wk. Animal performance was recorded weekly, with CH4 and hydrogen (H2) emissions recorded daily. Dry matter intake and animal performance were not affected by the inclusion of 3-NOP. Over the duration of this study, the inclusion of 3-NOP decreased daily CH4 emissions by 30.6%, with a 227% increase in daily H2 emissions.


Asunto(s)
Alimentación Animal , Propanoles , Rumen , Animales , Bovinos , Masculino , Alimentación Animal/análisis , Peso Corporal , Dieta/veterinaria , Suplementos Dietéticos/análisis , Fermentación , Metano/metabolismo , Rumen/metabolismo
7.
Sci Rep ; 13(1): 9034, 2023 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-37270611

RESUMEN

Improving cattle feed efficiency through selection of residual feed intake (RFI) is a widely accepted approach to sustainable beef production. A greater understanding of the molecular control of RFI in various breeds offered contrasting diets is necessary for the accurate identification of feed efficient animals and will underpin accelerated genetic improvement of the trait. The aim of this study was to determine genes and biological processes contributing to RFI across varying breed type and dietary sources in skeletal muscle tissue. Residual feed intake was calculated in Charolais and Holstein-Friesian steers across multiple dietary phases (phase-1: high concentrate (growing-phase); phase-2: zero-grazed grass (growing-phase); phase-3: high concentrate (finishing-phase). Steers divergent for RFI within each breed and dietary phase were selected for muscle biopsy collection, and muscle samples subsequently subjected to RNAseq analysis. No gene was consistently differentially expressed across the breed and diet types examined. However, pathway analysis revealed commonality across breeds and diets for biological processes including fatty acid metabolism, immune function, energy production and muscle growth. Overall, the lack of commonality of individual genes towards variation in RFI both within the current study and compared to the published literature, suggests other genomic features warrant further evaluation in relation to RFI.


Asunto(s)
Alimentación Animal , Transcriptoma , Bovinos/genética , Animales , Alimentación Animal/análisis , Fitomejoramiento , Ingestión de Alimentos/genética , Dieta/veterinaria
8.
ISME J ; 17(7): 1128-1140, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37169869

RESUMEN

Protozoa comprise a major fraction of the microbial biomass in the rumen microbiome, of which the entodiniomorphs (order: Entodiniomorphida) and holotrichs (order: Vestibuliferida) are consistently observed to be dominant across a diverse genetic and geographical range of ruminant hosts. Despite the apparent core role that protozoal species exert, their major biological and metabolic contributions to rumen function remain largely undescribed in vivo. Here, we have leveraged (meta)genome-centric metaproteomes from rumen fluid samples originating from both cattle and goats fed diets with varying inclusion levels of lipids and starch, to detail the specific metabolic niches that protozoa occupy in the context of their microbial co-habitants. Initial proteome estimations via total protein counts and label-free quantification highlight that entodiniomorph species Entodinium and Epidinium as well as the holotrichs Dasytricha and Isotricha comprise an extensive fraction of the total rumen metaproteome. Proteomic detection of protozoal metabolism such as hydrogenases (Dasytricha, Isotricha, Epidinium, Enoploplastron), carbohydrate-active enzymes (Epidinium, Diplodinium, Enoploplastron, Polyplastron), microbial predation (Entodinium) and volatile fatty acid production (Entodinium and Epidinium) was observed at increased levels in high methane-emitting animals. Despite certain protozoal species having well-established reputations for digesting starch, they were unexpectedly less detectable in low methane emitting-animals fed high starch diets, which were instead dominated by propionate/succinate-producing bacterial populations suspected of being resistant to predation irrespective of host. Finally, we reaffirmed our abovementioned observations in geographically independent datasets, thus illuminating the substantial metabolic influence that under-explored eukaryotic populations have in the rumen, with greater implications for both digestion and methane metabolism.


Asunto(s)
Cilióforos , Rumen , Animales , Bovinos , Rumen/microbiología , Proteómica , Cilióforos/genética , Cilióforos/metabolismo , Rumiantes/metabolismo , Almidón/metabolismo , Metano/metabolismo
10.
Front Genet ; 14: 1092877, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36873940

RESUMEN

Bovine herpesvirus 1 (BoHV-1), is associated with several clinical syndromes in cattle, among which bovine respiratory disease (BRD) is of particular significance. Despite the importance of the disease, there is a lack of information on the molecular response to infection via experimental challenge with BoHV-1. The objective of this study was to investigate the whole-blood transcriptome of dairy calves experimentally challenged with BoHV-1. A secondary objective was to compare the gene expression results between two separate BRD pathogens using data from a similar challenge study with BRSV. Holstein-Friesian calves (mean age (SD) = 149.2 (23.8) days; mean weight (SD) = 174.6 (21.3) kg) were either administered BoHV-1 inoculate (1 × 107/mL × 8.5 mL) (n = 12) or were mock challenged with sterile phosphate buffered saline (n = 6). Clinical signs were recorded daily from day (d) -1 to d 6 (post-challenge), and whole blood was collected in Tempus RNA tubes on d six post-challenge for RNA-sequencing. There were 488 differentially expressed (DE) genes (p < 0.05, False Discovery rate (FDR) < 0.10, fold change ≥2) between the two treatments. Enriched KEGG pathways (p < 0.05, FDR <0.05); included Influenza A, Cytokine-cytokine receptor interaction and NOD-like receptor signalling. Significant gene ontology terms (p < 0.05, FDR <0.05) included defence response to virus and inflammatory response. Genes that are highly DE in key pathways are potential therapeutic targets for the treatment of BoHV-1 infection. A comparison to data from a similar study with BRSV identified both similarities and differences in the immune response to differing BRD pathogens.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA