Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Econ Entomol ; 116(3): 713-718, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-36951454

RESUMEN

Potato leafroll virus (PLRV) has been well managed by neonicotinoids since their widespread adoption in the United States, becoming virtually absent from seed and production fields in the Northwest. However, with increasing interest in discontinuing neonicotinoid usage, there is concern that PLRV could enjoy a resurgence in the absence of effective alternative chemistries. We tested the effects of afidopyropen, an insecticide with novel mode of action, on PLRV transmission and the feeding/probing behavior of its primary vector, the green peach aphid (Myzus persicae [Sulzer]). Afidopyropen foliar sprays decreased PLRV transmission by individual green peach aphids relative to water controls: PLRV acquisition from treated potato plants and subsequent transmission was reduced by 89%, and PLRV inoculation by viruliferous aphids to treated potato plants was reduced by 35%. Although electropenetrograph analyses following 4-h recordings of individual aphids on potato plants showed decreases in the total and mean duration of phloem feeding (E) on plants subject to an afidopyropen treatment relative to water, these only trended toward significance. Taken together, these results suggest treatment with afidopyropen can decrease PLRV transmission in potatoes, but that significant changes in feeding/probing might not occur quickly post-exposure. Overall, while the reductions in transmission were not as dramatic as have been observed following neonicotinoid treatments, afidopyropen may be a useful alternative and should be evaluated in field experiments.


Asunto(s)
Áfidos , Solanum tuberosum , Animales , Neonicotinoides/farmacología , Enfermedades de las Plantas/prevención & control
2.
Pestic Biochem Physiol ; 165: 104553, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32359535

RESUMEN

Thrips tabaci is a key pest of onions, especially in the Pacific Northwestern USA. Management of T. tabaci is dominated by the application of various insecticides. However, T. tabaci is known to develop insecticide resistance which possibly leads to control failures, crop loss, and environmental concern. Here, we evaluated resistance status of T. tabaci populations from conventional and organic commercial onion fields to three widely used insecticides: oxamyl, methomyl, and abamectin with on-field concentration-mortality bioassays. The biochemistry and molecular mechanisms underlying resistance to these insecticides were also investigated by using enzymatic assays and detecting resistance-associated mutations. Field-evolved resistance to oxamyl, methomyl and abamectin were detected in most of the T. tabaci populations collected from conventional onion farms. At the labeled field rate, all the tested insecticides, particularly methomyl and oxamyl, had significantly reduced efficacy. Enzymatic assays of insecticide target and detoxification enzymes indicated that T. tabaci populations in Western USA onions harbor multiple mechanisms of resistance including enhanced activities of detoxification enzymes and target site insensitivity. Our results provide new information in understanding the dynamics of T. tabaci adaptation to multiple insecticides, which will help to design sustainable insecticide resistance management strategies for T. tabaci. Furthermore, this study provides the foundation for future research in identifying the biochemical and molecular markers associated with insecticide resistance in T. tabaci.


Asunto(s)
Insecticidas , Thysanoptera , Animales , Resistencia a los Insecticidas , Metomil , Cebollas
3.
Environ Entomol ; 45(4): 781-9, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27271946

RESUMEN

Pest phenology models allow producers to anticipate pest outbreaks and deploy integrated pest management (IPM) strategies. Phenology models are particularly useful for cropping systems with multiple economically damaging pests throughout a season. Potato (Solanum tuberosum L.) crops of Washington State, USA, are attacked by many insect pests including the potato tuberworm (Phthorimaea operculella Zeller), the beet leafhopper (Circulifer tenellus Baker), and the green peach aphid (Myzus persicae Sulzer). Each of these pests directly damages potato foliage or tubers; C. tenellus and M. persicae also transmit pathogens that can drastically reduce potato yields. We monitored the seasonal population dynamics of these pests by conducting weekly sampling on a network of commercial farms from 2007 to 2014. Using these data, we developed phenology models to characterize the seasonal population dynamics of each pest based on accumulated degree-days (DD). All three pests exhibited consistent population dynamics across seasons that were mediated by temperature. Of the three pests, C. tenellus was generally the first detected in potato crops, with 90% of adults captured by 936 DD. In contrast, populations of P. operculella and M. persicae built up more slowly over the course of the season, with 90% cumulative catch by 1,590 and 2,634 DD, respectively. Understanding these seasonal patterns could help potato producers plan their IPM strategies while allowing them to move away from calendar-based applications of insecticides. More broadly, our results show how long-term monitoring studies that explore dynamics of multiple pest species can aid in developing IPM strategies in crop systems.


Asunto(s)
Hemípteros/fisiología , Control de Insectos , Mariposas Nocturnas/fisiología , Estaciones del Año , Solanum tuberosum , Animales , Áfidos/fisiología , Larva/crecimiento & desarrollo , Larva/fisiología , Masculino , Modelos Teóricos , Mariposas Nocturnas/crecimiento & desarrollo , Dinámica Poblacional , Solanum tuberosum/crecimiento & desarrollo , Washingtón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA