Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Biomed Eng ; 8(5): 611-627, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38561491

RESUMEN

Butyrate-a metabolite produced by commensal bacteria-has been extensively studied for its immunomodulatory effects on immune cells, including regulatory T cells, macrophages and dendritic cells. However, the development of butyrate as a drug has been hindered by butyrate's poor oral bioavailability, owing to its rapid metabolism in the gut, its low potency (hence, necessitating high dosing), and its foul smell and taste. Here we report that the oral bioavailability of butyrate can be increased by esterifying it to serine, an amino acid transporter that aids the escape of the resulting odourless and tasteless prodrug (O-butyryl-L-serine, which we named SerBut) from the gut, enhancing its systemic uptake. In mice with collagen-antibody-induced arthritis (a model of rheumatoid arthritis) and with experimental autoimmune encephalomyelitis (a model of multiple sclerosis), we show that SerBut substantially ameliorated disease severity, modulated key immune cell populations systemically and in disease-associated tissues, and reduced inflammatory responses without compromising the global immune response to vaccination. SerBut may become a promising therapeutic for autoimmune and inflammatory diseases.


Asunto(s)
Artritis Experimental , Disponibilidad Biológica , Butiratos , Profármacos , Serina , Animales , Profármacos/farmacología , Profármacos/uso terapéutico , Profármacos/farmacocinética , Profármacos/química , Ratones , Serina/metabolismo , Butiratos/farmacología , Butiratos/uso terapéutico , Butiratos/química , Butiratos/administración & dosificación , Administración Oral , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/inmunología , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/inmunología , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/inmunología , Ratones Endogámicos C57BL , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Femenino
2.
bioRxiv ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38496521

RESUMEN

Atherosclerosis is a chronic inflammatory disease associated with the accumulation of low-density lipoprotein (LDL) in arterial walls. Higher levels of the anti-inflammatory cytokine IL-10 in serum are correlated with reduced plaque burden. However, cytokine therapies have not translated well to the clinic, partially due to their rapid clearance and pleiotropic nature. Here, we engineered IL-10 to overcome these challenges by hitchhiking on LDL to atherosclerotic plaques. Specifically, we constructed fusion proteins in which one domain is IL-10 and the other is an antibody fragment (Fab) that binds to protein epitopes of LDL. In murine models of atherosclerosis, we show that systemically administered Fab-IL-10 constructs bind circulating LDL and traffic to atherosclerotic plaques. One such construct, 2D03-IL-10, significantly reduces aortic immune cell infiltration to levels comparable to healthy mice, whereas non-targeted IL-10 has no therapeutic effect. Mechanistically, we demonstrate that 2D03-IL-10 preferentially associates with foamy macrophages and reduces pro-inflammatory activation markers. This platform technology can be applied to a variety of therapeutics and shows promise as a potential targeted anti-inflammatory therapy in atherosclerosis.

3.
Cell Rep Med ; 5(1): 101345, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38128533

RESUMEN

Immunogenic biologics trigger an anti-drug antibody (ADA) response in patients that reduces efficacy and increases adverse reactions. Our laboratory has shown that targeting protein antigen to the liver microenvironment can reduce antigen-specific T cell responses; herein, we present a strategy to increase delivery of otherwise immunogenic biologics to the liver via conjugation to a synthetic mannose polymer, p(Man). This delivery leads to reduced antigen-specific T follicular helper cell and B cell responses resulting in diminished ADA production, which is maintained throughout subsequent administrations of the native biologic. We find that p(Man)-antigen treatment impairs the ADA response against recombinant uricase, a highly immunogenic biologic, without a dependence on hapten immunodominance or control by T regulatory cells. We identify increased T cell receptor signaling and increased apoptosis and exhaustion in T cells as effects of p(Man)-antigen treatment via transcriptomic analyses. This modular platform may enhance tolerance to biologics, enabling long-term solutions for an ever-increasing healthcare problem.


Asunto(s)
Formación de Anticuerpos , Productos Biológicos , Humanos , Antígenos , Anticuerpos , Linfocitos B , Productos Biológicos/farmacología
4.
ACS Nano ; 17(23): 23374-23390, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37688780

RESUMEN

Diffuse large B-cell lymphoma (DLBCL) remains a formidable diagnosis in need of new treatment paradigms. In this work, we elucidated an opportunity for therapeutic synergy in DLBCL by reactivating tumor protein p53 with a stapled peptide, ATSP-7041, thereby priming cells for apoptosis and enhancing their sensitivity to BCL-2 family modulation with a BH3-mimetic, ABT-263 (navitoclax). While this combination was highly effective at activating apoptosis in DLBCL in vitro, it was highly toxic in vivo, resulting in a prohibitively narrow therapeutic window. We, therefore, developed a targeted nanomedicine delivery platform to maintain the therapeutic potency of this combination while minimizing its toxicity via packaging and targeted delivery of a stapled peptide. We developed a CD19-targeted polymersome using block copolymers of poly(ethylene glycol) disulfide linked to poly(propylene sulfide) (PEG-SS-PPS) for ATSP-7041 delivery into DLBCL cells. Intracellular delivery was optimized in vitro and validated in vivo by using an aggressive human DLBCL xenograft model. Targeted delivery of ATSP-7041 unlocked the ability to systemically cotreat with ABT-263, resulting in delayed tumor growth, prolonged survival, and no overt toxicity. This work demonstrates a proof-of-concept for antigen-specific targeting of polymersome nanomedicines, targeted delivery of a stapled peptide in vivo, and synergistic dual intrinsic apoptotic therapy against DLBCL via direct p53 reactivation and BCL-2 family modulation.


Asunto(s)
Linfoma de Células B Grandes Difuso , Proteínas Proto-Oncogénicas c-bcl-2 , Humanos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/uso terapéutico , Preparaciones Farmacéuticas , Proteína p53 Supresora de Tumor/metabolismo , Línea Celular Tumoral , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/metabolismo , Linfoma de Células B Grandes Difuso/patología , Péptidos/metabolismo , Apoptosis
5.
Nat Biomed Eng ; 7(9): 1142-1155, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37679570

RESUMEN

Inducing antigen-specific tolerance during an established immune response typically requires non-specific immunosuppressive signalling molecules. Hence, standard treatments for autoimmunity trigger global immunosuppression. Here we show that established antigen-specific responses in effector T cells and memory T cells can be suppressed by a polymer glycosylated with N-acetylgalactosamine (pGal) and conjugated to the antigen via a self-immolative linker that allows for the dissociation of the antigen on endocytosis and its presentation in the immunoregulatory environment. We show that pGal-antigen therapy induces antigen-specific tolerance in a mouse model of experimental autoimmune encephalomyelitis (with programmed cell-death-1 and the co-inhibitory ligand CD276 driving the tolerogenic responses), as well as the suppression of antigen-specific responses to vaccination against a DNA-based simian immunodeficiency virus in non-human primates. Our findings show that pGal-antigen therapy invokes mechanisms of immune tolerance to resolve antigen-specific inflammatory T-cell responses and suggest that the therapy may be applicable across autoimmune diseases.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Tolerancia Inmunológica , Animales , Ratones , Autoinmunidad , Glicosilación , Acetilgalactosamina , Encefalomielitis Autoinmune Experimental/terapia
6.
Adv Healthc Mater ; 12(26): e2300515, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37503634

RESUMEN

Butyrate is a key bacterial metabolite that plays an important and complex role in modulation of immunity and maintenance of epithelial barriers. Its translation to clinic is limited by poor bioavailability, pungent smell, and the need for high doses, and effective delivery strategies have yet to realize clinical potential. Here, a novel polymeric delivery platform for tunable and sustainable release of butyrate consisting of a methacrylamide backbone with butyryl ester or phenyl ester side chains as well as mannosyl side chains, which is also applicable to other therapeutically relevant metabolites is reported. This platform's utility in the treatment of non-healing diabetic wounds is explored. This butyrate-containing material modulated immune cell activation in vitro and induced striking changes in the milieu of soluble cytokine and chemokine signals present within the diabetic wound microenvironment in vivo. This novel therapy shows efficacy in the treatment of non-healing wounds through the modulation of the soluble signals present within the wound, and importantly accommodates the critical temporal regulation associated with the wound healing process. Currently, the few therapies to address non-healing wounds demonstrate limited efficacy. This novel platform is positioned to address this large unmet clinical need and improve the closure of otherwise non-healing wounds.


Asunto(s)
Diabetes Mellitus , Polímeros , Humanos , Polímeros/farmacología , Manosa , Preparaciones de Acción Retardada/farmacología , Butiratos/farmacología , Butiratos/uso terapéutico , Cicatrización de Heridas , Diabetes Mellitus/tratamiento farmacológico , Ésteres
7.
bioRxiv ; 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37066302

RESUMEN

Immunogenic biologics trigger an anti-drug antibody (ADA) response in patients, which reduces efficacy and increases adverse reactions. Our laboratory has previously shown that targeting protein antigen to the liver microenvironment can reduce antigen-specific T cell responses; herein, we present a strategy to increase delivery of otherwise immunogenic biologics to the liver via conjugation to a synthetic mannose polymer (p(Man)). This delivery leads to reduced antigen-specific T follicular helper cell and B cell responses resulting in diminished ADA production, which is maintained throughout subsequent administrations of the native biologic. We found that p(Man)-antigen treatment impairs the ADA response against recombinant uricase, a highly immunogenic biologic, without a dependence on hapten immunodominance or control by Tregs. We identify increased TCR signaling and increased apoptosis and exhaustion in T cells as effects of p(Man)-antigen treatment via transcriptomic analyses. This modular platform may enhance tolerance to biologics, enabling long-term solutions for an ever-increasing healthcare problem.

8.
Front Immunol ; 12: 714842, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34630389

RESUMEN

Inverse vaccines that tolerogenically target antigens to antigen-presenting cells (APCs) offer promise in prevention of immunity to allergens and protein drugs and treatment of autoimmunity. We have previously shown that targeting hepatic APCs through intravenous injection of synthetically glycosylated antigen leads to effective induction of antigen-specific immunological tolerance. Here, we demonstrate that targeting these glycoconjugates to lymph node (LN) APCs under homeostatic conditions leads to local and increased accumulation in the LNs compared to unmodified antigen and induces a tolerogenic state both locally and systemically. Subcutaneous administration directs the polymeric glycoconjugate to the draining LN, where the glycoconjugated antigen generates robust antigen-specific CD4+ and CD8+ T cell tolerance and hypo-responsiveness to antigenic challenge via a number of mechanisms, including clonal deletion, anergy of activated T cells, and expansion of regulatory T cells. Lag-3 up-regulation on CD4+ and CD8+ T cells represents an essential mechanism of suppression. Additionally, presentation of antigen released from the glycoconjugate to naïve T cells is mediated mainly by LN-resident CD8+ and CD11b+ dendritic cells. Thus, here we demonstrate that antigen targeting via synthetic glycosylation to impart affinity for APC scavenger receptors generates tolerance when LN dendritic cells are the cellular target.


Asunto(s)
Antígenos/inmunología , Tolerancia Inmunológica , Ganglios Linfáticos/inmunología , Animales , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Antígenos/metabolismo , Comunicación Celular/inmunología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Femenino , Glicosilación , Activación de Linfocitos/inmunología , Ratones , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
9.
Biomaterials ; 278: 121159, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34634664

RESUMEN

The SARS-CoV-2 virus has caused an unprecedented global crisis, and curtailing its spread requires an effective vaccine which elicits a diverse and robust immune response. We have previously shown that vaccines made of a polymeric glyco-adjuvant conjugated to an antigen were effective in triggering such a response in other disease models and hypothesized that the technology could be adapted to create an effective vaccine against SARS-CoV-2. The core of the vaccine platform is the copolymer p(Man-TLR7), composed of monomers with pendant mannose or a toll-like receptor 7 (TLR7) agonist. Thus, p(Man-TLR7) is designed to target relevant antigen-presenting cells (APCs) via mannose-binding receptors and then activate TLR7 upon endocytosis. The p(Man-TLR7) construct is amenable to conjugation to protein antigens such as the Spike protein of SARS-CoV-2, yielding Spike-p(Man-TLR7). Here, we demonstrate Spike-p(Man-TLR7) vaccination elicits robust antigen-specific cellular and humoral responses in mice. In adult and elderly wild-type mice, vaccination with Spike-p(Man-TLR7) generates high and long-lasting titers of anti-Spike IgGs, with neutralizing titers exceeding levels in convalescent human serum. Interestingly, adsorbing Spike-p(Man-TLR7) to the depot-forming adjuvant alum amplified the broadly neutralizing humoral responses to levels matching those in mice vaccinated with formulations based off of clinically-approved adjuvants. Additionally, we observed an increase in germinal center B cells, antigen-specific antibody secreting cells, activated T follicular helper cells, and polyfunctional Th1-cytokine producing CD4+ and CD8+ T cells. We conclude that Spike-p(Man-TLR7) is an attractive, next-generation subunit vaccine candidate, capable of inducing durable and robust antibody and T cell responses.


Asunto(s)
COVID-19 , Inmunidad Humoral , Adyuvantes Inmunológicos , Anciano , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Linfocitos T CD8-positivos , Vacunas contra la COVID-19 , Humanos , Inmunidad Celular , Ratones , SARS-CoV-2
10.
ACS Cent Sci ; 7(8): 1368-1380, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34466656

RESUMEN

The COVID-19 pandemic underscores the need for rapid, safe, and effective vaccines. In contrast to some traditional vaccines, nanoparticle-based subunit vaccines are particularly efficient in trafficking antigens to lymph nodes, where they induce potent immune cell activation. Here, we developed a strategy to decorate the surface of oxidation-sensitive polymersomes with multiple copies of the SARS-CoV-2 spike protein receptor-binding domain (RBD) to mimic the physical form of a virus particle. We evaluated the vaccination efficacy of these surface-decorated polymersomes (RBDsurf) in mice compared to RBD-encapsulated polymersomes (RBDencap) and unformulated RBD (RBDfree), using monophosphoryl-lipid-A-encapsulated polymersomes (MPLA PS) as an adjuvant. While all three groups produced high titers of RBD-specific IgG, only RBDsurf elicited a neutralizing antibody response to SARS-CoV-2 comparable to that of human convalescent plasma. Moreover, RBDsurf was the only group to significantly increase the proportion of RBD-specific germinal center B cells in the vaccination-site draining lymph nodes. Both RBDsurf and RBDencap drove similarly robust CD4+ and CD8+ T cell responses that produced multiple Th1-type cytokines. We conclude that a multivalent surface display of spike RBD on polymersomes promotes a potent neutralizing antibody response to SARS-CoV-2, while both antigen formulations promote robust T cell immunity.

11.
Sci Adv ; 7(24)2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34117071

RESUMEN

The revolutionizing efficacy of recombinant human bone morphogenetic protein (rhBMP-2) for clinical spinal fusion is hindered by safety issues associated with the high dose required. However, it continues to be widely used, for example, in InFUSE Bone Graft (Medtronic). Here, we developed a translational protein engineering-based approach to reduce the dose and thereby improve the safety of rhBMP-2 delivered in a collagen sponge, as in InFUSE Bone Graft. We engineered a bridge protein with high affinity for rhBMP-2 and collagen that can be simply added to the product's formulation, demonstrating improved efficacy at low dose of rhBMP-2 in two mouse models of bone regeneration, including a newly developed spinal fusion model. Moreover, the bridge protein can control the retention of rhBMP-2 from endogenous collagenous extracellular matrix of tissue. Our approach may be generalizable to other growth factors and collagen-based materials, for use in many other applications in regenerative medicine.


Asunto(s)
Fusión Vertebral , Animales , Proteína Morfogenética Ósea 2/farmacología , Proteínas Morfogenéticas Óseas , Regeneración Ósea , Colágeno , Ratones , Proteínas Recombinantes/farmacología , Factor de Crecimiento Transformador beta
12.
bioRxiv ; 2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33851166

RESUMEN

A diverse portfolio of SARS-CoV-2 vaccine candidates is needed to combat the evolving COVID-19 pandemic. Here, we developed a subunit nanovaccine by conjugating SARS-CoV-2 Spike protein receptor binding domain (RBD) to the surface of oxidation-sensitive polymersomes. We evaluated the humoral and cellular responses of mice immunized with these surface-decorated polymersomes (RBDsurf) compared to RBD-encapsulated polymersomes (RBDencap) and unformulated RBD (RBDfree), using monophosphoryl lipid A-encapsulated polymersomes (MPLA PS) as an adjuvant. While all three groups produced high titers of RBD-specific IgG, only RBDsurf elicited a neutralizing antibody response to SARS-CoV-2 comparable to that of human convalescent plasma. Moreover, RBDsurf was the only group to significantly increase the proportion of RBD-specific germinal center B cells in the vaccination-site draining lymph nodes. Both RBDsurf and RBDencap drove similarly robust CD4+ and CD8+ T cell responses that produced multiple Th1-type cytokines. We conclude that multivalent surface display of Spike RBD on polymersomes promotes a potent neutralizing antibody response to SARS-CoV-2, while both antigen formulations promote robust T cell immunity.

13.
Front Immunol ; 12: 555095, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33746941

RESUMEN

Hepatocytes compose up to 80% of the total liver and have been indicated as important players in the induction of immunologic tolerance in this organ. We show that hepatocytes possess the molecular machinery required for the cross-presentation of extracellular antigens. Using a derivative of the model antigen ovalbumin (OVA) covalently modified with a polymer containing multiple N-acetylgalactosamine residues (pGal-OVA) that enhance extracellular antigen uptake by mimicking the glycome of apoptotic debris, we show efficient hepatocyte-dependent induction of cross-tolerance of both adoptively transferred OT-I cells and endogenous OVA-specific CD8+ T lymphocytes, for example inducing tolerance to OVA-expressing skin transplants. Our study confirms that hepatocytes are capable of inducing peripheral tolerogenesis and provides proof of concept that they may be a valuable candidate for in vivo targeted tolerogenic treatments.


Asunto(s)
Acetilgalactosamina/inmunología , Antígenos/inmunología , Linfocitos T CD8-positivos/inmunología , Reactividad Cruzada/inmunología , Hepatocitos/inmunología , Tolerancia Inmunológica/inmunología , Transportador de Casetes de Unión a ATP, Subfamilia B, Miembro 2/genética , Transportador de Casetes de Unión a ATP, Subfamilia B, Miembro 2/inmunología , Transportador de Casetes de Unión a ATP, Subfamilia B, Miembro 2/metabolismo , Traslado Adoptivo/métodos , Animales , Presentación de Antígeno/inmunología , Células Cultivadas , Hepatocitos/citología , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Ovalbúmina/inmunología , Trasplante de Piel/métodos , Solubilidad , Proteínas de Transporte Vesicular/inmunología , Proteínas de Transporte Vesicular/metabolismo
14.
Sci Immunol ; 6(56)2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33637595

RESUMEN

Although most current treatments for autoimmunity involve broad immunosuppression, recent efforts have aimed to suppress T cells in an antigen-specific manner to minimize risk of infection. One such effort is through targeting antigen to the apoptotic pathway to increase presentation of the antigen of interest in a tolerogenic context. Erythrocytes present a rational candidate to target because of their high rate of eryptosis, which facilitates continual uptake by antigen-presenting cells in the spleen. Here, we develop an approach that binds antigens to erythrocytes to induce sustained T cell dysfunction. Transcriptomic and phenotypic analyses revealed signatures of self-tolerance and exhaustion, including up-regulation of PD-1, CTLA4, Lag3, and TOX. Antigen-specific T cells were incapable of responding to an adjuvanted antigenic challenge even months after antigen clearance. With this strategy, we prevented pathology in a mouse experimental autoimmune encephalomyelitis model. CD8+ T cell education occurred in the spleen and was dependent on cross-presenting Batf3+ dendritic cells. These results demonstrate that antigens associated with eryptotic erythrocytes induce lasting T cell dysfunction that could be protective in deactivating pathogenic T cells.


Asunto(s)
Presentación de Antígeno , Linfocitos T CD8-positivos/inmunología , Células Dendríticas/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Eriptosis/inmunología , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Reactividad Cruzada , Células Dendríticas/metabolismo , Eritrocitos/metabolismo , Eritrocitos/patología , Femenino , Células HEK293 , Humanos , Tolerancia Inmunológica , Ratones , Ratones Noqueados , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
15.
Arthritis Rheumatol ; 73(5): 769-778, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33169522

RESUMEN

OBJECTIVE: Rheumatoid arthritis (RA) is a major autoimmune disease that causes synovitis and joint damage. Although clinical trials have been performed using interleukin-10 (IL-10), an antiinflammatory cytokine, as a potential treatment of RA, the therapeutic effects of IL-10 have been limited, potentially due to insufficient residence in lymphoid organs, where antigen recognition primarily occurs. This study was undertaken to engineer an IL-10-serum albumin (SA) fusion protein and evaluate its effects in 2 murine models of RA. METHODS: SA-fused IL-10 (SA-IL-10) was recombinantly expressed. Mice with collagen antibody-induced arthritis (n = 4-7 per group) or collagen-induced arthritis (n = 9-15 per group) were injected intravenously with wild-type IL-10 or SA-IL-10, and the retention of SA-IL-10 in the lymph nodes (LNs), immune cell composition in the paws, and therapeutic effect of SA-IL-10 on mice with arthritis were assessed. RESULTS: SA fusion to IL-10 led to enhanced accumulation in the mouse LNs compared with unmodified IL-10. Intravenous SA-IL-10 treatment restored immune cell composition in the paws to a normal status, elevated the frequency of suppressive alternatively activated macrophages, reduced IL-17A levels in the paw-draining LN, and protected joint morphology. Intravenous SA-IL-10 treatment showed similar efficacy as treatment with an anti-tumor necrosis factor antibody. SA-IL-10 was equally effective when administered intravenously, locally, or subcutaneously, which is a benefit for clinical translation of this molecule. CONCLUSION: SA fusion to IL-10 is a simple but effective engineering strategy for RA therapy and has potential for clinical translation.


Asunto(s)
Artritis Experimental/inmunología , Artritis Reumatoide/inmunología , Articulaciones del Pie/efectos de los fármacos , Interleucina-10/farmacología , Ganglios Linfáticos/inmunología , Macrófagos/efectos de los fármacos , Proteínas Recombinantes de Fusión/farmacología , Albúmina Sérica/farmacología , Animales , Células Presentadoras de Antígenos/metabolismo , Artritis Experimental/metabolismo , Artritis Reumatoide/metabolismo , Modelos Animales de Enfermedad , Pie , Articulaciones del Pie/inmunología , Articulaciones del Pie/metabolismo , Articulaciones del Pie/patología , Miembro Posterior , Antígenos de Histocompatibilidad Clase I/metabolismo , Inyecciones Intravenosas , Interleucina-17/inmunología , Interleucina-17/metabolismo , Interleucina-6/inmunología , Ganglios Linfáticos/metabolismo , Ganglios Linfáticos/patología , Activación de Macrófagos/efectos de los fármacos , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Ratones , Ingeniería de Proteínas , Transporte de Proteínas , Receptores Fc/metabolismo , Factor de Crecimiento Transformador beta/efectos de los fármacos , Factor de Crecimiento Transformador beta/inmunología , Inhibidores del Factor de Necrosis Tumoral/farmacología
16.
Nat Biomed Eng ; 5(5): 387-398, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33046864

RESUMEN

Interleukin-4 (IL-4) suppresses the development of multiple sclerosis in a murine model of experimental autoimmune encephalomyelitis (EAE). Here, we show that, in mice with EAE, the accumulation and persistence in the lymph nodes and spleen of a systemically administered serum albumin (SA)-IL-4 fusion protein leads to higher efficacy in preventing disease development than the administration of wild-type IL-4 or of the clinically approved drug fingolimod. We also show that the SA-IL-4 fusion protein prevents immune-cell infiltration in the spinal cord, decreases integrin expression in antigen-specific CD4+ T cells, increases the number of granulocyte-like myeloid-derived suppressor cells (and their expression of programmed-death-ligand-1) in spinal cord-draining lymph nodes and decreases the number of T helper 17 cells, a pathogenic cell population in EAE. In mice with chronic EAE, SA-IL-4 inhibits immune-cell infiltration into the spinal cord and completely abrogates immune responses to myelin antigen in the spleen. The SA-IL-4 fusion protein may be prophylactically and therapeutically advantageous in the treatment of multiple sclerosis.


Asunto(s)
Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Inmunosupresores/administración & dosificación , Interleucina-4/metabolismo , Proteínas Recombinantes de Fusión/administración & dosificación , Albúmina Sérica/metabolismo , Animales , Encefalomielitis Autoinmune Experimental/inmunología , Femenino , Semivida , Inmunosupresores/farmacocinética , Inmunosupresores/farmacología , Inyecciones Intravenosas , Ganglios Linfáticos/química , Ganglios Linfáticos/inmunología , Ratones , Proteínas Recombinantes de Fusión/farmacocinética , Proteínas Recombinantes de Fusión/farmacología , Bazo/química , Bazo/inmunología , Células Th17/efectos de los fármacos
18.
J Stem Cells Regen Med ; 10(2): 38-48, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25705097

RESUMEN

Microencapsulating stem cells in injectable microbeads can enhance delivery and localization, but their ability to act as growth factor production sources is still unknown. To address this concern, growth factor mRNA levels and production from alginate microbeads with encapsulated human adipose stem cells (ASC microbeads) cultured in both growth and chondrogenic media (GM and CM) were measured over a two week period. Human ASCs in microbeads were either commercially purchased (Lonza) or isolated from six human donors and compared to human ASCs on tissue culture polystyrene (TCPS). The effects of crosslinking and alginate compositions on growth factor mRNA levels and production were also determined. Secretion profiles of IGF-I, TGF-ß3 and VEGF-A from commercial human ASC microbeads were linear and at a significantly higher rate than TCPS cultures over two weeks. For human ASCs derived from different donors, microencapsulation increased pthlh and both IGF-I and TGF-ß3 secretion. CM decreased fgf2 and VEGF-A secretion from ASC microbeads derived from the same donor population. Crosslinking microbeads in BaCl2 instead of CaCl2 did not eliminate microencapsulation's beneficial effects, but did decrease IGF-I production. Increasing the guluronate content of the alginate microbead increased IGF-I retention. Decreasing alginate molecular weight eliminated the effects microencapsulation had on increasing IGF-I secretion. This study demonstrated that microencapsulation can enhance chondrogenic growth factor production and that chondrogenic medium treatment can decrease angiogenic growth factor production from ASCs, making these cells a potential source for paracrine factors that can stimulate cartilage regeneration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...