Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Therm Biol ; 119: 103762, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38071898

RESUMEN

Predicting ecological responses to rapid environmental change has become one of the greatest challenges of modern biology. One of the major hurdles in forecasting these responses is accurately quantifying the thermal environments that organisms experience. The distribution of temperatures available within an organism's habitat is typically measured using data loggers called operative temperature models (OTMs) that are designed to mimic certain properties of heat exchange in the focal organism. The gold standard for OTM construction in studies of terrestrial ectotherms has been the use of copper electroforming which creates anatomically accurate models that equilibrate quickly to ambient thermal conditions. However, electroformed models require the use of caustic chemicals, are often brittle, and their production is expensive and time intensive. This has resulted in many researchers resorting to the use of simplified OTMs that can yield substantial measurement errors. 3D printing offers the prospect of robust, easily replicated, morphologically accurate, and cost-effective OTMs that capture the benefits but alleviate the problems associated with electroforming. Here, we validate the use of OTMs that were 3D printed using several materials across eight lizard species of different body sizes and living in habitats ranging from deserts to tropical forests. We show that 3D printed OTMs have low thermal inertia and predict the live animal's equilibration temperature with high accuracy across a wide range of body sizes and microhabitats. Finally, we developed a free online repository and database of 3D scans (https://www.3dotm.org/) to increase the accessibility of this tool to researchers around the world and facilitate ease of production of 3D printed models. 3D printing of OTMs is generalizable to taxa beyond lizards. If widely adopted, this approach promises greater accuracy and reproducibility in studies of terrestrial thermal ecology and should lead to improved forecasts of the biological impacts of climate change.


Asunto(s)
Regulación de la Temperatura Corporal , Lagartos , Animales , Análisis Costo-Beneficio , Reproducibilidad de los Resultados , Temperatura Corporal , Temperatura , Ecosistema , Lagartos/fisiología , Impresión Tridimensional
2.
Integr Comp Biol ; 63(1): 34-47, 2023 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-37248050

RESUMEN

Feeding is a complex process that involves an integrated response of multiple functional systems. Animals evolve phenotypic integration of complex morphological traits to covary and maximize performance of feeding behaviors. Specialization, such as feeding on dangerous prey, can further shape the integration of behavior and morphology as traits are expected to evolve and maintain function in parallel. Feeding on centipedes, with their powerful forcipules that pinch and inject venom, has evolved multiple times within snakes, including the genus Tantilla. However, the behavioral and morphological adaptations used to consume this dangerous prey are poorly understood. By studying snakes with varying degrees of dietary specialization, we can test the integration of diet, morphology, and behavior to better understand the evolution of consuming difficult prey. We studied the prey preference and feeding behavior of Tantilla using the flat-headed snake (T. gracilis) and the crowned snake (T. coronata), which differ in the percentage of centipedes in their diet. We then quantified cranial anatomy using geometric morphometric data from CT scans. To test prey preference, we offered multiple types of prey and recorded snake behavior. Both species of snakes showed interest in multiple prey types, but only struck or consumed centipedes. To subdue centipedes, crowned snakes used coiling and holding (envenomation) immediately after striking, while flat-headed snakes used the novel behavior of pausing and holding onto centipedes for a prolonged time prior to the completion of swallowing. Each skull element differed in shape after removing the effects of size, position, and orientation. The rear fang was larger in crowned snakes, but the mechanical advantage of the lower jaw was greater in flat-headed snakes. Our results suggest that the integration of behavioral and morphological adaptations is important for the success of subduing and consuming dangerous prey.


Asunto(s)
Quilópodos , Colubridae , Animales , Conducta Predatoria/fisiología , Cráneo/anatomía & histología , Conducta Alimentaria/fisiología , Colubridae/anatomía & histología
3.
J Exp Zool B Mol Dev Evol ; 336(6): 457-469, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34254734

RESUMEN

Research focused on understanding the evolutionary factors that shape parity mode evolution among vertebrates have long focused on squamate reptiles (snakes and lizards), which contain all but one of the evolutionary transitions from oviparity to viviparity among extant amniotes. While most hypotheses have focused on the role of cool temperatures in favoring viviparity in thermoregulating snakes and lizards, there is a growing appreciation in the biogeographic literature for the importance of lower oxygen concentrations at high elevations for the evolution of parity mode. However, the physiological mechanisms underlying how hypoxia might reduce fitness, and how viviparity can alleviate this fitness decrement, has not been systematically evaluated. We qualitatively evaluated previous research on reproductive and developmental physiology, and found that (1) hypoxia can negatively affect fitness of squamate embryos, (2) oxygen availability in the circulatory system of adult lizards can be similar or greater than an egg, and (3) gravid females can possess adaptive phenotypic plasticity in response to hypoxia. These findings suggest that the impact of hypoxia on the development and physiology of oviparous and viviparous squamates would be a fruitful area of research for understanding the evolution of viviparity. To that end, we propose an integrative research program for studying hypoxia and the evolution of viviparity in squamates.


Asunto(s)
Altitud , Oxígeno , Reptiles/fisiología , Viviparidad de Animales no Mamíferos/fisiología , Animales , Evolución Biológica , Femenino , Reptiles/embriología
4.
Zoology (Jena) ; 142: 125820, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32769003

RESUMEN

Predator-prey interactions can be important drivers of morphological evolution, and antipredator traits in particular. Further, ecological context can be an important factor shaping the evolution of these traits. However, the role of ecological factors such as habitat structure in altering predator-based selection is not well known for antipredator traits such as decoy coloration. We used a combination of a natural history collection survey and a clay model experiment in open- and closed-canopy habitats to study how ecological context alters the fitness benefit of either red or blue decoy coloration in skinks. We found that the development and ecology of red decoy coloration of mole skinks differed substantially from blue tail coloration of other sympatric skink species. Mole skinks do not reach the body size of sympatric species of skinks and retain decoy coloration throughout development. Both patterns of scarring in museum specimens and attacks on plasticine models suggest that red coloration serves as a decoy, attracting attacks to the autotomous tail. While predation rates were similar across habitats, models with red tails were attacked far less frequently in open habitats than models with blue tails, while attack rates were similar in closed habitats. Our results suggest that red decoy coloration in mole skinks could be an adaptation to relatively open-canopy habitats. Our study has important implications for understanding how habitat structure and predator-based selection can alter the evolutionary dynamics of decoy coloration.


Asunto(s)
Ecosistema , Lagartos/fisiología , Pigmentación , Adaptación Fisiológica , Animales , Cola (estructura animal)/fisiología
5.
PLoS One ; 11(10): e0164713, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27760215

RESUMEN

Three congeneric lizards from the southeastern United States (Plestiodon fasciatus, P. inexpectatus, and P. laticeps) exhibit a unique nested distribution. All three skink species inhabit the US Southeast, but two extend northward to central Ohio (P. fasciatus and P. laticeps) and P. fasciatus extends well into Canada. Distinct interspecific differences in microhabitat selection and behavior are associated with the cooler temperatures of the more Northern ranges. We hypothesized that interspecific differences in metabolic temperature sensitivity locally segregates them across their total range. Resting oxygen consumption was measured at 20°, 25° and 30°C. Plestiodon fasciatus, from the coolest habitats, exhibited greatly elevated oxygen consumption compared to the other species at high ecologically-relevant temperatures (0.10, 0.17 and 0.83 ml O2. g-1. h-1 at 20°, 25° and 30°C, respectively). Yet, P. inexpectatus, from the warmest habitats, exhibited sharply decreased oxygen consumption compared to the other species at lower ecologically-relevant temperatures (0.09, 0.27 and 0.42 ml O2. g-1. h-1 at 20°, 25° and 30°C, respectively). Plestiodon laticeps, from both open and closed microhabitats and intermediate latitudinal range, exhibited oxygen consumptions significantly lower than the other two species (0.057, 0.104 and 0.172 ml O2. g-1. h-1 at 20°, 25° and 30°C, respectively). Overall, Plestiodon showed metabolic temperature sensitivities (Q10s) in the range of 2-3 over the middle of each species' normal temperature range. However, especially P. fasciatus and P. inexpectatus showed highly elevated Q10s (9 to 25) at the extreme ends of their temperature range. While morphologically similar, these skinks are metabolically distinct across the genus' habitat, likely having contributed to their current distribution.


Asunto(s)
Metabolismo Basal , Fenómenos Ecológicos y Ambientales , Lagartos/metabolismo , Temperatura , Aclimatación , Animales , Tamaño Corporal , Lagartos/anatomía & histología , Lagartos/fisiología , Consumo de Oxígeno , Descanso , Especificidad de la Especie
6.
J Therm Biol ; 51: 42-6, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25965016

RESUMEN

Hollow copper models painted to match the reflectance of the animal subject are standard in thermal ecology research. While the copper electroplating process results in accurate models, it is relatively time consuming, uses caustic chemicals, and the models are often anatomically imprecise. Although the decreasing cost of 3D printing can potentially allow the reproduction of highly accurate models, the thermal performance of 3D printed models has not been evaluated. We compared the cost, accuracy, and performance of both copper and 3D printed lizard models and found that the performance of the models were statistically identical in both open and closed habitats. We also find that 3D models are more standard, lighter, durable, and inexpensive, than the copper electroformed models.


Asunto(s)
Temperatura Corporal , Ecosistema , Modelos Biológicos , Impresión Tridimensional , Animales , Fenómenos Biofísicos , Cobre , Lagartos , Impresión Tridimensional/economía , Temperatura
7.
Zoology (Jena) ; 115(5): 339-44, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22938695

RESUMEN

Numerous vertebrates employ one or more autotomous body parts as an anti-predation mechanism. Many lizards possess an autotomous tail that is brightly colored blue, which has been suggested to either serve as a decoy mechanism to divert predator attention to the autotomous body part, as an interspecific signal, or as an aposematic signal to predators that it is distasteful or dangerous. While theoretical studies suggest that a conspicuous autotomous body part that increases the probability of escape while not increasing the rate of detection will be favorable over a completely cryptic form, there is little empirical evidence supporting the adaptive benefit of an autotomous blue tail. We used in situ clay models of a scincid lizard to test the fitness consequences of blue coloration. Lizard models with a dark base color and blue decoy coloration experienced no measurable difference in avian predation relative to an all-dark model, which suggests that blue coloration neither serves as an aposematic signal nor increases the conspicuousness of the lizard model. Despite statistically similar attack rates, avian attacks on models with blue coloration were indeed focused on body sections that were colored blue. Our results suggest that the blue tail in lizards serves as an effective decoy, and that avian predation has possibly played a role in the evolution of the blue tail.


Asunto(s)
Aves , Lagartos , Pigmentación , Conducta Predatoria , Cola (estructura animal) , Animales , Evolución Biológica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...