Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Dairy Sci ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38754823

RESUMEN

Urine output and urinary urea-N excretion (UUNe) excretion are critical measures to accurately evaluate N metabolism in lactating dairy cows and environmental concerns related to manure N. The objectives of this study were: (a) to compare estimates of UUNe, urine output, and related variables from 3 pre-established measurement protocols (bladder catheterization, external collection cup, and spot sampling) and from dietary salt supplementation, (b) to study temporal variation in UUNe, urine output, and related variables as affected by measurement protocol, and (c) to evaluate urine specific gravity as a predictor of urine output. Twelve multiparous Holstein cows were used in a split-plot, Latin square design. Cows were randomly assigned to a diet (main plot) containing either 0.7 or 1.6% NaCl (dry matter basis) and then assigned to a sequence of 3 protocols (sub-plot) in a balanced 3 × 3 Latin square with 14-d period. For each protocol, measurements were conducted every 4 h for 3 consecutive days. Urine output was determined gravimetrically for bladder catheterization and external collection cup or based on measured cow body weight, measured urinary creatinine concentration, and the assumed creatinine excretion of 29 mg/kg body weight per d for spot sampling. Urine specific gravity was measured by refractometry. When averaged over a 3-d measurement period and compared with bladder catheterization, spot sampling underestimated urine output (6.8 kg/d; 20%) and UUNe (26 g/d; 13%) but exhibited greater concentration of urinary urea-N (+58 mg/dL; 10%). There were no differences in any measurements determined via bladder catheterization or external cup device protocols, except for urine output that tended to be 3.7 kg/d lower for collection cup compared with bladder catheterization. The 2 gravimetric protocols yielded lower urinary creatinine concentration than spot sampling (64.7 vs. 88.1 mg/dL) and lower creatinine excretion (25.3 mg/kg of body weight per d) than the value of 29 mg/kg of body weight per d generally assumed in the spot sampling protocol. Salt supplementation tended to increase urine output (+5.2 kg/d) and decrease urinary urea-N concentration (-93 mg/dL), urinary creatinine concentration (-9.5 mg/dL), milk protein concentration (-0.19 percentage unit) and milk protein yield (-70 g/d). There was greater temporal variation of urine output when measured via the collection cup compared with bladder catheterization in the first 2 d but not the third day of sampling, suggesting that an extended period of adaptation might have improved data quality of the collection cup protocol. The R2 of the linear regression to predict urine output with urine specific gravity was 67, 73, and 32% for bladder catheterization, collection cup, and spot sampling, respectively. In this study, spot sampling underestimated both urine output and UUNe, but UUNe determination did not differ between external collection cup and bladder catheterization. However, our data suggested the need to investigate the adaptation protocol, required days of measurements and the conversion of urine mass to urine volume to improve accuracy and precision of urine collection protocols.

2.
J Dairy Sci ; 107(6): 3558-3572, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38216043

RESUMEN

Reducing dietary CP is a well-established means to improve N use efficiency. Yet, few studies have considered if transient restrictions in dietary CP could reduce the environmental footprint of late-lactation cows. We hypothesized that the effects of CP feeding pattern on digestibility and environmental outputs would be amplified at lower dietary CP. We tested CP levels below and near predicted requirements (low protein [LP], 13.8%; high protein [HP], 15.5%) offered in 2 feeding patterns: where diets alternated ±1.8 percentage units CP every 2 d (oscillating [OF]) or remained static. Our study used a 2 × 2 factorial design with 16 mid- to late-lactation Holsteins (mean = 128, SD = 12 DIM), divided into rumen-cannulated (n = 8) and noncannulated subsets (n = 8). For each 28-d experimental period, we recorded feed intake and milk production and took samples of orts (1×/d) and milk (2×/d) for 4 d. For the cannulated subset, we measured and sampled from the total mass of feces and urine production and collected plasma 2×/d across 4 d. For the noncannulated subset, we sampled carbon dioxide and methane emissions 3×/d for 4 d. For each subset, we fit linear mixed models with fixed effects for CP level, CP feeding pattern, the interaction of CP level and CP feeding pattern, period, and a random effect for cow. For plasma and urinary urea-N, we conducted time series analysis. Contrary to our hypothesis, we found no evidence that dietary CP level and CP feeding pattern interacted to influence N balance, nutrient digestibility, or gas emissions. Results showed HP resulted in similar milk N but increased manure N, reducing N use efficiency (milk true protein N/intake N) relative to LP. For OF, urea-N in urine and plasma peaked 46 to 52 h after the first higher-CP phase feeding. Nutrient digestibility and gas emissions were similar across treatments, except CO2 production was greater for OF-HP. In summary, measured variables were minimally affected by dietary CP alternating ±1.8 percentage units every 48 h, even when average dietary CP was fed below predicted requirements (LP). Although our findings suggest that mid- to late-lactation cows are resilient to oscillation in dietary CP, oscillating CP neither reduced the environmental footprint by improving nutrient use efficiencies nor reduced the potential for direct and indirect greenhouse gas emissions.


Asunto(s)
Aminoácidos , Dieta , Proteínas en la Dieta , Digestión , Lactancia , Leche , Nitrógeno , Animales , Bovinos , Femenino , Nitrógeno/metabolismo , Dieta/veterinaria , Proteínas en la Dieta/metabolismo , Aminoácidos/metabolismo , Aminoácidos/sangre , Leche/metabolismo , Leche/química , Gases de Efecto Invernadero , Alimentación Animal , Nutrientes/metabolismo
3.
J Dairy Sci ; 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38278300

RESUMEN

Our objectives were to determine the effects of reducing dietary crude protein (CP) concentration on nutrient digestibility, rumen function, N balance, and serum AA concentration for dairy cows in late lactation. At the initiation of the experimental period, we stratified Holstein cows (n = 128; mean ± standard deviation 224 ± 54 d in milk) by parity and days pregnant (86 ± 25 d) and assigned them to 1 of 16 pens. For 3 wk, all cows received a covariate diet containing 16.9% CP [dry matter (DM) basis]. For the subsequent 12 wk, we assigned pens to 1 of 4 treatments containing 16.2, 14.4, 13.4, or 11.9% CP (DM basis) in a randomized complete block design. Diets were fed as a total mixed ration once daily. To reduce dietary CP, we replaced soybean meal with soybean hulls in the concentrate mix (DM basis). Diet evaluations suggested that several EAA, especially His, limited productivity as dietary CP declined. Digestibility of DM and CP decreased linearly with dietary CP reduction. Digestibility of neutral detergent fiber and potentially digestible neutral detergent fiber tended to respond in a quadratic pattern with the greatest digestibility at intermediate treatments. The reduction in dietary CP did not affect ruminal pH, but ruminal ammonia-N and branched-chain VFA concentrations declined linearly. The concentration of milk urea-N and plasma urea-N, secretion of milk N, and excretions of fecal N, urinary N, urinary urea-N, and unaccounted N decreased linearly with the reduction in dietary CP concentration. Urinary N expressed as a percentage of N intake was unaffected by dietary CP. Serum concentrations of total essential AA and non-essential AA were unaffected by dietary CP concentration. However, the ratio of essential to non-essential AA decreased with decreasing dietary CP. Serum 3-methylhistidine concentration increased linearly with decreasing dietary CP concentration, indicating greater skeletal muscle breakdown. Although our trial confirmed that reducing dietary CP decreased absolute excretion of urinary N, diet evaluations suggested that milk protein production decreased as certain essential AA became increasingly limited. Thus, reduced-CP diets have the potential to lessen reactive-N outputs of late lactation cows, but more research is needed to design diets that minimize deleterious effects on productivity.

4.
J Dairy Sci ; 106(12): 8774-8786, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37678780

RESUMEN

Limited research has examined the interaction between dietary crude protein (CP) level and CP feeding pattern. We tested CP level (low protein [LP], 13.8%; high protein [HP], 15.5% CP, dry matter [DM] basis) and CP feeding pattern (OF = oscillating, SF = static) using a 2 × 2 factorial in 16 mid- to late-lactation Holsteins (initially 128 ± 12 d in milk; mean ± SD). Cows ate total mixed rations formulated by exchanging soy hulls and ground corn with solvent soybean meal to keep constant ratios of neutral detergent fiber to starch (1.18:1), rumen-degradable protein to CP (0.61:1), and forage-to-concentrate (1.5:1) in DM. The OF treatments alternated diets every 48 h to vary CP above and below the mean CP level (OF-LP = 13.8% ± 1.8%; OF-HP = 15.5% ± 1.8% CP [DM basis]) whereas diets were constant in SF (SF-LP = 13.8%; SF-HP = 15.5% CP [DM basis]). In four 28-d periods, 8 rumen-cannulated and 8 noncannulated cows formed 2 Latin rectangles. On d 25 to 28 of each period, each cow's feed intake and milk production were recorded, and samples were taken of orts (1×/d) and milk (2×/d). We fit linear mixed models with fixed CP level, CP feeding pattern, and period effects, and a random intercept for cow, computing least squares means and standard errors. Neither CP level, CP feeding pattern, nor the interaction affected DM intake, feed efficiency, or production of milk, fat- and protein-corrected milk (FPCM), fat, true protein, or lactose. Milk urea-N (MUN) yield was lesser for LP. The LP and OF conditions decreased MUN concentration. The CP level tended to interact with CP feeding pattern so that milk protein concentration was greatest for OF-HP. The OF and LP conditions increased the ratio of true protein to MUN yield. Within OF, cosinor mixed models of selected variables showed that cows maintained production of FPCM across dietary changes, but MUN followed a wave-pattern at a 2-d delay relative to dietary changes. A tendency for lesser MUN with OF contradicted prior research and suggested potential differences in urea-N metabolism between OF and SF. Results showed that cows maintained production of economically-relevant components regardless of CP feeding pattern and CP level. Contrary to our hypothesis, the effects of 48-h oscillating CP were mostly consistent across CP levels, suggesting that productivity is resilient to patterned variation in dietary CP over time even when average CP supply is low (13.8% of DM) and despite 48 h restrictions at 12.2% CP.


Asunto(s)
Alimentación Animal , Lactancia , Femenino , Bovinos , Animales , Alimentación Animal/análisis , Lactancia/fisiología , Dieta/veterinaria , Leche/metabolismo , Zea mays/metabolismo , Proteínas en la Dieta/metabolismo , Urea/metabolismo , Rumen/metabolismo , Digestión
5.
J Dairy Sci ; 105(12): 9581-9596, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36307237

RESUMEN

Dairy cow responses to dietary crude protein (CP) may depend on stage of lactation. The primary objective of this study was to evaluate the effects of 4 concentrations of dietary CP on dry matter intake (DMI), production performance, net energy for lactation (NEL) output in milk, feed efficiency (FE: milk NEL/DMI), and nitrogen use efficiency (100 × milk protein-N/N intake) when fed to cows grouped as early, mid-early, mid-late, and late lactation. Our secondary objective was to determine the range of CP concentration at which production responses were not negatively affected across days in milk (DIM). Multiparous Holstein cows (n = 64) were stratified by DIM [initial average ± standard deviation: 86 ± 14.9 (early), 119 ± 10.0 (mid-early), 167 ± 22.2 (mid-late), and 239 ± 11.1 (late)] and then randomly assigned within DIM group to receive 1 of 4 total mixed rations containing 13.6, 15.2, 16.7, and 18.3% CP (dry matter basis) according to a 4 × 4 factorial arrangement of treatments. Cows were individually fed a covariate diet for 14 d, followed by 56 d of treatment diets. Milk yield and DMI were recorded daily and milk components were analyzed weekly for 2 consecutive days at 3 daily milkings. Data were analyzed using a categorical mixed-effect model to evaluate the effects of CP concentration and DIM using linear, quadratic, and cubic contrasts, and their interactions. Additionally, a mixed-effect cubic regression model was fit with DIM, dietary CP concentration, and their interaction as continuous independent variables. Dietary CP concentration deemed optimal across DIM was determined as the range of CP for which the dependent responses did not differ from the predicted maximum. With advancing stage of lactation, DMI, milk NEL output, and FE decreased linearly (from 30.4 to 28.4 kg/d for DMI, from 33.2 to 23.3 Mcal/d for NEL output, and from 1.09 to 0.82 Mcal milk NEL/kg DMI for FE for early and late lactation cows, respectively). Responses to dietary CP concentration were linear, quadratic, and cubic with the greatest values observed when cows were fed the 16.7% CP diet across DIM (30.8 kg/d, 31.0 Mcal/d, and 1.01 Mcal/kg for DMI, milk NEL output, and FE, respectively). There was an interaction between dietary CP concentration and stage of lactation for DMI, milk NEL output, milk component yield, and FE, which was due to the decline in response to additional CP as lactation progressed. Compared with the 16.7% CP diet, feeding the 18.3% CP diet decreased milk NEL 0.81 and 5.3 Mcal/d for early and late lactation cows, respectively, indicating that feeding a higher CP concentration in late lactation had a negative effect on cow performance. Nitrogen use efficiency declined linearly with increasing CP concentration and DIM. Regression analysis suggested that dietary CP ranging from 16.3 to 17.4% maintained production in early and mid-early lactation. However, dietary CP could be reduced to between 15.7 and 17.1% in late lactation. This research suggested that there are distinct ranges of dietary CP concentrations that maintain cow performance at each stage of lactation.


Asunto(s)
Lactancia , Leche , Femenino , Bovinos , Animales , Lactancia/fisiología , Leche/metabolismo , Proteínas en la Dieta/metabolismo , Dieta/veterinaria , Nitrógeno/metabolismo
6.
J Dairy Sci ; 105(9): 7462-7481, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35931475

RESUMEN

Manure nitrogen (N) from cattle contributes to nitrous oxide and ammonia emissions and nitrate leaching. Measurement of manure N outputs on dairy farms is laborious, expensive, and impractical at large scales; therefore, models are needed to predict N excreted in urine and feces. Building robust prediction models requires extensive data from animals under different management systems worldwide. Thus, the study objectives were (1) to collate an international database of N excretion in feces and urine based on individual lactating dairy cow data from different continents; (2) to determine the suitability of key variables for predicting fecal, urinary, and total manure N excretion; and (3) to develop robust and reliable N excretion prediction models based on individual data from lactating dairy cows consuming various diets. A raw data set was created based on 5,483 individual cow observations, with 5,420 fecal N excretion and 3,621 urine N excretion measurements collected from 162 in vivo experiments conducted by 22 research institutes mostly located in Europe (n = 14) and North America (n = 5). A sequential approach was taken in developing models with increasing complexity by incrementally adding variables that had a significant individual effect on fecal, urinary, or total manure N excretion. Nitrogen excretion was predicted by fitting linear mixed models including experiment as a random effect. Simple models requiring dry matter intake (DMI) or N intake performed better for predicting fecal N excretion than simple models using diet nutrient composition or milk performance parameters. Simple models based on N intake performed better for urinary and total manure N excretion than those based on DMI, but simple models using milk urea N (MUN) and N intake performed even better for urinary N excretion. The full model predicting fecal N excretion had similar performance to simple models based on DMI but included several independent variables (DMI, diet crude protein content, diet neutral detergent fiber content, milk protein), depending on the location, and had root mean square prediction errors as a fraction of the observed mean values of 19.1% for intercontinental, 19.8% for European, and 17.7% for North American data sets. Complex total manure N excretion models based on N intake and MUN led to prediction errors of about 13.0% to 14.0%, which were comparable to models based on N intake alone. Intercepts and slopes of variables in optimal prediction equations developed on intercontinental, European, and North American bases differed from each other, and therefore region-specific models are preferred to predict N excretion. In conclusion, region-specific models that include information on DMI or N intake and MUN are required for good prediction of fecal, urinary, and total manure N excretion. In absence of intake data, region-specific complex equations using easily and routinely measured variables to predict fecal, urinary, or total manure N excretion may be used, but these equations have lower performance than equations based on intake.


Asunto(s)
Lactancia , Nitrógeno , Animales , Bovinos , Dieta/veterinaria , Fibras de la Dieta/metabolismo , Femenino , Estiércol , Leche/química , Nitrógeno/metabolismo , Urea/metabolismo
7.
J Dairy Sci ; 105(6): 5044-5061, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35525617

RESUMEN

Our aim was to explore whether changes in plasma essential AA (EAA) concentration ([EAA]p) or profile (defined here as the molar proportion of individual [EAA]p relative to the total [EAA]p) may serve as an indicator of the EAA status of a cow. We undertook a meta-analysis with the objectives to determine if different plasma EAA profiles exist among cows and to explore the association of [EAA]p or the profile of EAA with lactating cow performance and measures of N utilization. We hypothesized the existence of differences in [EAA]p and different plasma EAA profile for cows with greater milk output, feed efficiency, and greater N use efficiency (NUE; milk true protein-N:N intake) compared with cows with lower milk output, feed efficiency, and lower NUE. The data set included 22 feeding trials and 96 dietary treatments. First, a mixed-effect model analysis was used to predict [EAA]p in response to the categorical fixed effect of EAA, continuous fixed effect of National Research Council model-predicted metabolizable protein (MP) supply, continuous fixed effect of body weight, the fixed effect of EAA and MP supply interaction, the fixed effect of EAA and body weight interaction, and the random effect of study. Then, residuals of the model were standardized based on Z-score and clustered using the hierarchical method (Euclidean distance and Ward's minimum variance method) resulting in 2 clusters. Finally, a fixed-effect model was used to evaluate the significance with which clusters were associated with [EAA]p, cow performance, feed efficiency, and NUE. The total concentration of [EAA]p was lower (784 vs. 983 µM) and the concentration of each EAA was on average 22 µM lower for cows in cluster 1 compared with cluster 2 with the smallest and greatest difference found for Met (4 µM) and Val (59 µM), respectively. The percentage difference in [EAA]p was the smallest for Thr (-5.3%) and the greatest for Leu (-37.1%). There was no difference between clusters for Arg, His, and Met molar proportions; however, cows in cluster 1 had a lower molar proportion of Leu and a tendency for lower molar proportion of Val compared with cows in cluster 2. Additionally, cows in cluster 1 had greater molar proportions of Ile, Lys, and Thr and a tendency for greater molar proportion of Phe compared with cows in cluster 2. The fixed-effect model analysis indicated that cows in cluster 1 had higher milk energy output (+3.2 Mcal/d), true protein yield (+87 g/d) and fat yield (+236 g/d), feed efficiency (milk Mcal:dry matter intake; +8% unit), and a tendency for greater MP efficiency (Milk true protein/MP supply; +2.3% unit) than cows in cluster 2. These results suggested greater use of EAA by the mammary gland (as reflected by greater milk protein synthesis) and lower hepatic catabolism of AA (as reflected by a tendency to greater MP efficiency) in cows of cluster 1 compared with cluster 2. Our findings should be evaluated further, including whether the relative molar proportions of plasma EAA might serve as a holistic indicator of the EAA status of cows as related to their productivity, feed efficiency and N utilization.


Asunto(s)
Aminoácidos Esenciales , Lactancia , Aminoácidos Esenciales/metabolismo , Animales , Peso Corporal , Bovinos , Análisis por Conglomerados , Dieta/veterinaria , Femenino , Lactancia/fisiología , Leche/química , Proteínas de la Leche/análisis , Rumen/metabolismo
8.
JDS Commun ; 2(1): 16-20, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36337286

RESUMEN

Reducing overall reactive N losses from dairy production systems depends substantially on reducing the atmospheric emission of manure ammonia (NH3). The objective of this study was to determine potential NH3-N emission of reconstituted manure using an in vitro protocol. Feces and urine were collected from a companion study designed as a Latin square in which 4 Holstein and 4 Jersey cows were fed diets containing 2 levels of forage neutral detergent fiber (NDF) [low-forage NDF (19%) vs. high-forage NDF (24%; dry matter basis)] from either alfalfa silage or corn silage (70:30 vs. 30:70 ratio of alfalfa silage NDF:corn silage NDF) arranged as a 2 × 2 factorial. All diets contained similar levels of crude protein (17%) and starch (23%), and had forage-to-concentrate ratios of 55:45 and 68:32 for low- and high-forage NDF diets, respectively. Measurements of NH3-N emission were conducted in a laboratory-scale chamber with 16 g of reconstituted manure (urine plus feces) incubated for 48 h at 15°C with sampling at 1, 3, 6, 12, 24, 36, and 48 h. Hourly NH3-N emissions data were analyzed using a repeated-measures mixed model in R (https://www.r-project.org/). The fixed effects were breed, forage NDF level, forage NDF source, time of sampling, and all possible interactions; cow was included as a random term. The cumulative 48-h NH3-N emissions and the scaled-up emissions accounting for daily output of manure from each cow were analyzed using the same model but without time of sampling. Level and source of forage in the diet tended to influence the pattern in hourly rate and 48-h cumulative emission, respectively. Accounting for daily manure volume differences, low-forage NDF diets led to lower estimates of daily NH3-N emissions than high-forage NDF diets (20% on a cow basis, 15% on a raw manure basis, and 18% on a manure-N basis). Compared with Holsteins, Jerseys emitted 17% lower estimated NH3-N on a cow basis, mainly due to lower manure excretion but tended to emit 15% more NH3-N expressed on a manure-N basis. Findings of this study suggested that cow breed and dietary forage NDF level should be considered in the prediction of NH3-N emission from the dairy industry.

9.
Transl Anim Sci ; 4(4): txaa202, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33336155

RESUMEN

The rapid pace of advancement in animal sciences is drastically changing conditions for undergraduate teaching and learning in the discipline. Shortly after the American Society of Animal Science (ASAS) centennial, we conducted a national survey of 90 faculty instructors from 49 academic institutions to assess their perceptions of emerging teaching topics. Participants rated 18 learning outcomes (LO) and 16 types of courses and experiences (CE) with respect to their importance and the adequacy of available offerings. This study presents the results of the survey along with a scoping review of animal sciences teaching and learning publications since 2008 (n = 71). Results indicated that discipline-specific competencies and core experiential learning remain central to animal sciences teaching and identified several distinct needs for research. Namely, we suggest that future research in animal sciences teaching and learning 1) develop animal-science-specific expertise on a greater variety of pedagogies, 2) validate improved methods for assessing transferable skills, 3) expand pedagogical knowledge of emerging topics (e.g., sustainability, data science, welfare science, social science), and 4) deepen and broaden animal sciences' teaching and learning identity through theory-building work and collaborations across instructors, disciplines, and institutions.

10.
J Dairy Sci ; 103(11): 9791-9802, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33076189

RESUMEN

Sustainable milk production and consumption in low-income countries must address food security and climate change mitigation simultaneously. Socioeconomic sustainability is paramount in low-income countries, where milk production and consumption represent a vehicle to improve human nutrition and health, as well as the potential for economic opportunity and improved livelihood of subsistence farmers. These benefits can only be achieved with judicious use of animal stocks and agricultural practices that do not exhaust available natural resources, which are often shared by regional farming communities. Milk and dairy foods provide variety to the diet and make significant contributions to meeting the needs for high-quality protein, calcium, magnesium, selenium, riboflavin, vitamin B12, and pantothenic acid (vitamin B5) in at-risk populations, particularly children, pregnant women, and the elderly. Milk production in low-income countries occurs largely in smallholder mixed crop-livestock systems where animals play multiple roles and may suffer from undernutrition, leading to negligible or no milk production during several months of the year. Non-food roles of livestock include draft, fuel (manure), store of capital, and insurance against crop failure. These roles and the social standing associated with animal ownership may incentivize the maintenance of large herds that place stress on feed (land) and water resources. Under these circumstances, sustainable intensification (i.e., increasing milk production from currently available resources) represents the single most important and practical strategy to improve the sustainability of milk production and consumption in low-income countries. Improving the genetic potential of animals and the availability of quality feed, and providing balanced nutrition are the most promising strategies to improve milk production and sustainability in low-income countries. For example, the deficit for milk in Ethiopia is estimated at 4.5 billion liters/year, which can be closed, in part, with balanced animal nutrition. Milk production in low-income countries will be more sustainable if it relies on natural resources available locally and regionally to supply essential nutrients to at-risk human populations.


Asunto(s)
Conservación de los Recursos Naturales , Industria Lechera/métodos , Industria Lechera/normas , Países en Desarrollo , Leche , Animales , Bovinos , Femenino , Humanos , Embarazo
11.
J Dairy Sci ; 103(7): 6218-6232, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32418692

RESUMEN

Amino acids and glucose have been shown to regulate protein synthesis in the mammary gland through their effects on cellular signaling pathways. Acetate might also have an effect on protein synthesis via the AMP-activated kinase signaling pathway, because it is the main energy source for the mammary secretory cell. Thus, the objective of this experiment was to evaluate the effects of casein and energy-yielding nutrients (acetate and glucose), and their combination, on performance and mammary metabolism. Six multiparous Holstein cows, averaging 49 kg of milk/d, were used in a 6 × 6 Latin square design with 14-d periods. Cows were fed to 100% National Research Council requirements for metabolizable protein (MP) and energy (ME) for 9 d, after which they were feed-restricted for 5 d to 85% of their individual ad libitum intake and then abomasally infused with 1 of 6 treatments. Treatments were acetate (A), glucose (G), each at 5% of ad libitum ME intake, casein (C) at 15% of ad libitum MP intake, A + C, G + C, or a saline solution (negative control). Casein infused alone increased milk protein yield numerically, with 25% recovery of the infused casein in milk protein. Glucose infused alone increased milk and milk protein yield and promoted the highest efficiency of nitrogen utilization (37%), with an efficiency of MP use for milk protein of 58%. We discovered no effect of treatment on mammary plasma flow, and the increase in milk protein yield with glucose infusion was brought about by greater mammary AA clearance rate. Infusion of casein and glucose together further increased milk protein yield in an additive fashion, and 47% of the infused casein was recovered in milk protein. Acetate infused alone had no effect on milk protein yield but increased milk fat yield numerically, suggesting that the greater amount of acetate taken up by the mammary gland was used for milk fat synthesis. Infusion of acetate and casein together yielded responses similar to those of casein alone. In conclusion, glucose has a major effect on stimulating milk protein synthesis, and the mammary gland has the ability to increase its supply of nutrients to match its synthetic capacity.


Asunto(s)
Caseínas/administración & dosificación , Bovinos , Glucosa/administración & dosificación , Glándulas Mamarias Animales/metabolismo , Proteínas de la Leche/biosíntesis , Abomaso/metabolismo , Acetatos/análisis , Aminoácidos/metabolismo , Animales , Caseínas/metabolismo , Femenino , Hipersensibilidad a los Alimentos , Tracto Gastrointestinal , Glucosa/metabolismo , Lactancia/fisiología , Glándulas Mamarias Animales/efectos de los fármacos , Leche/química , Proteínas de la Leche/análisis , Biosíntesis de Proteínas
12.
J Dairy Sci ; 103(7): 6087-6099, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32389470

RESUMEN

Our objective was to determine the effects of replacing alfalfa silage (AS) neutral detergent fiber (NDF) with corn silage (CS) NDF at 2 levels of forage NDF (FNDF) on enteric methane (CH4), lactation performance, ruminal fluid characteristics, digestibility, and metabolism of N and energy in Holstein and Jersey cows. Twelve Holstein and 12 Jersey cows (all primiparous and mid-lactation) were used in a triplicated split-plot 4 × 4 Latin square experiment, where breed and diet formed the main and subplots, respectively. The 4 iso-nitrogenous and iso-starch dietary treatments were arranged as a 2 × 2 factorial with 2 levels of FNDF [19 (low FNDF, LF) and 24% (high FNDF, HF) of dry matter] and 2 sources of FNDF (70:30 and 30:70 ratio of AS NDF to CS NDF). Soyhull (non-forage NDF) and corn grain were respectively used to keep dietary NDF and starch content similar across diets. Total collection of feces and urine over 3 d was performed on 8 cows (1 Latin square from each breed). The difference in dry matter intake (DMI) between Holsteins and Jerseys was greater when fed AS than CS. Compared with Jerseys, Holstein cows had greater body weight (48%), DMI (34%), fat- and protein-corrected milk (FPCM; 31%) and CH4 production (22%; 471 vs. 385 g/d). However, breed did not affect CH4 intensity (g/kg of FPCM) or yield (g/kg of DMI), nutrient digestibility, and N partitioning. Compared with HF, LF-fed cows had greater DMI (10%), N intake (8%), and FPCM (5%), but they were 5% less efficient (both FPCM/DMI and milk N/intake N). Compared with HF, LF-fed cows excreted 11 and 17% less urinary N (g/d and % of N intake, respectively). In spite of lower (2.5%) acetate and higher (10%) propionate (mol/100 mol ruminal volatile fatty acids) LF-fed cows had greater (6%) CH4 production (g/d) than did HF-fed cows, most likely due to increased DMI, as affected mainly by the soyhulls. Compared with AS, CS-fed cows had greater DMI (7%) and FPCM (4%), but they were less efficient (5%), and CH4 yield (g/kg of DMI) was reduced by 8%. In addition, per unit of gross energy intake, CS-fed cows lost less urinary energy (15%) and CH energy (11%) than did AS-fed cows. We concluded that, in contrast to level and source of FNDF, breed did not affect digestive and metabolic efficiencies, and, furthermore, neither breed nor dietary treatments affected CH4 intensity. The tradeoff between CH4 and N losses may have implications in future studies assessing the environmental effects of milk production when approached from a whole-farm perspective.


Asunto(s)
Fibras de la Dieta/administración & dosificación , Digestión/efectos de los fármacos , Lactancia/efectos de los fármacos , Metano/biosíntesis , Nitrógeno/metabolismo , Ensilaje/análisis , Animales , Bovinos , Estudios Cruzados , Dieta/veterinaria , Fibras de la Dieta/metabolismo , Metabolismo Energético , Ácidos Grasos Volátiles/metabolismo , Heces/química , Femenino , Medicago sativa/metabolismo , Leche/química , Proteínas de la Leche/análisis , Rumen/metabolismo , Almidón/metabolismo , Zea mays/metabolismo
13.
J Dairy Sci ; 103(3): 2264-2271, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31864747

RESUMEN

The effects of feeding a quebracho-chestnut tannin extract mixture on performance and nitrogen (N) utilization were assessed with 36 multiparous lactating Holstein cows (mean ± standard deviation; 706 ± 59 kg of body weight; 126 ± 20 d in milk) randomly assigned to 3 dietary treatments in a randomized complete block design. Following a 2-wk covariate adjustment period, cows were fed their assigned treatment diets for 13 wk. Rice hulls were removed from a total mixed ration with a 54:46 forage:concentrate ratio (% of dry matter; DM), and a tannin extract mixture from quebracho and chestnut trees (2:1 ratio) was included at 0, 0.45, and 1.80% of dietary DM. There was no interaction between dietary treatments and experimental week for the reported measurements except milk lactose percentage. Overall, treatments did not affect milk yield (48.6 ± 7.8 kg/d), fat- and protein-corrected milk (46.1 ± 7.6 kg/d), milk fat content (3.88 ± 0.65%) and yield (1.85 ± 0.38 kg/d), and true protein yield (1.45 ± 0.21 kg/d). However, incremental levels of tannin extracts in the diet produced a linear increase in DM intake (29.2 to 30.9 kg/d) and a linear decrease in kilograms of milk per kilogram of DM intake (1.67 to 1.57 kg/kg) and MUN (12.2 to 10.8 mg/dL). Furthermore, there was a quadratic effect of tannin extracts on milk true protein content (2.96, 3.13, and 3.00% for 0, 0.45, and 1.80% tannin extract, respectively) and a tendency for linear and quadratic response for body weight gain (0.31, 0.16, and 0.44 kg/d for 0, 0.45, and 1.80% tannin, respectively). Intake of N increased linearly (782, 795, and 820 g/d) and N utilization efficiency (milk N/intake N) decreased linearly (0.300, 0.301, and 0.275 for 0, 0.45, and 1.80% tannin, respectively). Relative to the 0% diet, 1.80% tannin extract reduced estimated urinary N excretion by 11%. In this study, adding 0.45% tannin extract to the diet reduced feed efficiency but had a positive effect on milk protein content. Feeding a tannin extract mixture from quebracho and chestnut may reduce environmental labile urinary N excretion without affecting milk yield but at the expense of a lower feed utilization efficiency.


Asunto(s)
Anacardiaceae/química , Bovinos/fisiología , Fagaceae/química , Leche/metabolismo , Nitrógeno/metabolismo , Taninos/administración & dosificación , Alimentación Animal/análisis , Animales , Peso Corporal/efectos de los fármacos , Dieta/veterinaria , Femenino , Glucolípidos/análisis , Glicoproteínas/análisis , Lactancia/efectos de los fármacos , Lactosa/análisis , Gotas Lipídicas , Leche/química , Proteínas de la Leche/análisis , Extractos Vegetales/administración & dosificación , Extractos Vegetales/química , Distribución Aleatoria
14.
J Dairy Sci ; 102(9): 8546-8558, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31301834

RESUMEN

In the semi-arid highlands of central Mexico, triticale (× Triticosecale L.) is emerging as an alternative, less water-demanding forage crop than alfalfa for dairy cattle. Studies reported here were aimed at evaluating triticale hay (TH) relative to alfalfa hay (AH) for lactating cow performance, apparent digestibility, N partition, and ruminal degradation kinetics of dry matter (DM), crude protein (CP), and neutral detergent fiber (NDF). Study 1 was conducted on a privately owned farm. Four barns were used to conduct 4 replicated 3 × 3 Latin squares (1 barn = 1 square), where each barn included 3 pens (experimental units) receiving 1 of 3 dietary treatments. Each pen had 62 Holstein dairy cows. All diets included a forage-to-concentrate ratio of 42:58 (DM basis), which is typical for intensive dairy farms of the region. Dietary treatments were formulated to replace AH with TH on a CP basis, and included (DM basis) 15.1% AH and 0% TH, 9.0% AH and 7.4% TH, and 0% AH and 16.4% TH. Diets were iso-energetic (1.64 Mcal of net energy for lactation/kg of DM) and iso-nitrogenous (17.9% CP). Pen-level DM intake and milk production were from all cows in the pen, but pen-level milk composition, apparent digestibility, and N partitioning were from 8 cows (observational units) randomly selected in each pen. Orthogonal contrasts were used to determine linear and quadratic effects of increasing TH from 0 to 7.4, and 16.4% of dietary DM. Although DM intake was not affected, there was a tendency for CP intake to decline linearly and for NDF intake to increased linearly as TH replaced AH in the diet. Milk production declined linearly by 0.077 kg/d for each additional percentage unit of TH in the diet, which amounted to a 3.5% decline when TH replaced AH entirely. However, no effect was observed on energy-corrected milk production because of a compensatory linear effect of increasing milk fat concentration with the incorporation of TH in the diet. Total-tract NDF digestibility tended to increase linearly by 18.5%, but no differences were detected for urinary urea-N excretion and for N utilization estimated as milk N/(fecal N + urinary N + milk N). Study 2 was an in situ trial conducted to determine the degradation kinetics of AH and TH used in study 1. In spite of differences in degradation kinetics parameters for DM, CP, and NDF, only NDF effective ruminal degradation tended to be greater for TH than AH. Replacing AH with TH at the level typically found in intensive dairy farms of the semi-arid regions of Mexico had minimal effects on milk production and N utilization.


Asunto(s)
Bovinos/fisiología , Lactancia/fisiología , Medicago sativa , Nitrógeno/metabolismo , Triticale , Alimentación Animal , Animales , Clima , Industria Lechera/métodos , Dieta/veterinaria , Fibras de la Dieta/administración & dosificación , Digestión , Femenino , Medicago sativa/metabolismo , México , Leche/química , Zea mays/metabolismo
15.
J Dairy Sci ; 102(2): 1601-1607, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30471912

RESUMEN

Our objectives were to assess the relationships between milk urea N (MUN), serum urea N (SUN), urine N (UN), and urinary urea N (UUN) in late-lactation cows fed N-limiting diets and compare these relationships with those previously established. Data were from a pen-based study in which 128 Holstein cows had been assigned to 1 of 16 pens in a randomized complete block design to assess the effects of diets containing 16.2, 14.4, 13.1, and 11.8% crude protein (CP, dry matter basis) during a 12-wk period. At least half of the cows in each pen were randomly selected to collect pen-level samples of serum and urine in wk 3, 7, and 11, when wk in lactation averaged 35, 39, and 43, respectively. A mixed model was developed to study the relationship of MUN with SUN, UN, and UUN. Week of lactation did not affect the relation between MUN and SUN across dietary treatments. However, we found a week × MUN interaction, suggesting that between wk 35 and 43 of lactation, UN excretion decreased from 89 to 73 g/d (-17 g/d) when MUN was 6.0 mg/dL (11.8% dietary CP) but increased from 142 to 149 g/d (+7 g/d) when MUN was 13.3 mg/dL (16.2% dietary CP). These effects were essentially due to changes in UUN excretion, which declined from 54 to 37 g/d (-17 g/d) and increased from 112 to 117 g/d (+5 g/d) when MUN was 6.0 and 13.3 mg/dL, respectively. When MUN was 11.2 mg/dL (15% dietary CP), UN and UUN excretions remained constant over time. Based on root mean squared prediction error and the concordance correlation coefficient, these data did not conform to most previously published prediction equations because of both mean and slope biases. The discrepancy could have resulted from difference in study design (cow vs. pen as experimental unit), dietary treatments (energy vs. N-limiting diets), frequency of measurement and duration of adaptation period (single measurement after 1 to 3 wk of adaptation vs. repeated measurements over a 12-wk period), method for determining urine volume (total collection vs. spot sampling), and the assay used to measure MUN. However, our data captured changes in kidney physiology that warrant further studies of long-term renal adaptation to N-limiting diets.


Asunto(s)
Bovinos/metabolismo , Dieta/veterinaria , Leche/química , Nitrógeno/metabolismo , Animales , Nitrógeno de la Urea Sanguínea , Bovinos/orina , Femenino , Lactancia , Nitrógeno/orina , Urea/análisis , Urea/orina
16.
J Dairy Sci ; 102(2): 1281-1293, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30591340

RESUMEN

Our objectives were to determine the effects of readily rumen-available carbohydrate source (refined starch vs. dextrose), the level of rumen-degradable protein (RDP), and their interaction on lactation performance, ruminal measurements, enteric methane (CH4) emission, nutrient digestibility, and nitrogen (N) balance in lactating dairy cows. Eighteen mid-lactation multiparous Holstein cows were used in this split-plot study. The main plots were created by randomly assigning 9 cows to diets of 11 or 9% RDP obtained by altering the percentage of soybean meal, expeller soybean meal, and blood meal in the diet. All diets included 16.4% crude protein. In the subplots, the effects of 0:10, 5:5, and 10:0 refined starch:dextrose ratio (% of dietary dry matter) were determined in three 3 × 3 Latin squares by randomly assigning the 9 cows in each RDP level into squares. Each period lasted 4 wk, with the last 2 wk allotted for sample collection. Carbohydrate source × RDP level interaction tended to influence dry matter intake (DMI), the concentration of urinary N, and urinary urea-N. Replacing refined starch with dextrose increased DMI, the molar percentage of ruminal butyrate and valerate, daily CH4 production (g/d), and fecal N and decreased the molar percentage of ruminal branched-chain volatile fatty acids, feed efficiency (fat- and protein-corrected milk/DMI), and N use efficiency (milk N/intake N) but did not influence nutrient digestibility. Enteric CH4 production was negatively related to the molar percentage of ruminal propionate but positively related to the molar percentage of ruminal butyrate. Treatments did not influence milk production responses, but cows fed 9% RDP diets had lower ruminal ammonia concentration (7.2 vs. 12.3 mg/dL) and tended to excrete less urinary purine derivatives (428 vs. 493 mmol/d) compared with cows fed 11% RDP diets, suggesting lower ruminal synthesis of microbial protein. Reducing the level of RDP in iso-nitrogenous diets had no effect on nutrient apparent total-tract digestibility, manure excretion and composition, N balance, and CH4 production. In this study, treatments did not affect yield (20.0 g of CH4/kg of DMI) or intensity (13.1 g of CH4/kg of fat- and protein-corrected milk), but methane production (g of CH4/d) was 7.0% lower and N use efficiency (conversion of intake N into milk protein) was 7.8% higher for cows fed a diet of 28.1% starch and 4.6% water-soluble carbohydrate compared with diets with lower starch and higher water-soluble carbohydrate contents.


Asunto(s)
Bovinos/metabolismo , Glucosa/metabolismo , Metano/metabolismo , Proteínas de la Leche/metabolismo , Leche/metabolismo , Nitrógeno/metabolismo , Rumen/metabolismo , Almidón/metabolismo , Amoníaco/metabolismo , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Digestión , Ácidos Grasos/metabolismo , Heces/química , Femenino , Lactancia , Proteínas de la Leche/análisis , Nitrógeno/análisis , Glycine max/metabolismo
17.
J Dairy Sci ; 100(10): 8614-8629, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28780106

RESUMEN

Our objective was to explore the trade-offs between economic performance (farm net income, FNI) and environmental outcomes (whole-farm P and N balances) of dairy farms in Wisconsin (WI; United States) and Québec (QC; Canada). An Excel-based linear program model (N-CyCLES; nutrient cycling: crops, livestock, environment, and soil) was developed to optimize feeding, cropping, and manure management as a single unit of management. In addition to FNI, P and N balances model outputs included (1) the mix of up to 9 home-grown and 17 purchased feeds for up to 5 animal groups, (2) the mix of up to 5 crop rotations in up to 5 land units and c) the mix of up to 7 fertilizers (solid and liquid manure and 5 commercial fertilizers) to allocate in each land unit. The model was parameterized with NRC nutritional guidelines and regional nutrient management planning rules. Simulations were conducted on a typical WI farm of 107 cows and 151 ha of cropland and, a Southern QC farm of 87 cows and 142 ha of cropland and all results were expressed per kg of fat- and protein-corrected milk (FPCM). In absence of constraints on P and N balances, maximum FNI was 0.12 and 0.11 $/kg of FPCM for WI and QC, respectively, with P and N balances of 1.05 and 14.29 g/kg of FPCM in WI but 0.60 and 15.70 g/kg of FPCM in QC. The achievable reduction (balance at maximum FNI minus balance when the simulation objective was to minimize P or N balance) was 0.31 and 0.54 g of P/kg of FPCM (29 and 89% reduction), but 2.37 and 3.31 g of N/kg of FPCM (17 and 24% reduction) in WI and QC, respectively. Among other factors, differences in animal unit per hectare and reliance on biological N fixation may have contributed to lower achievable reductions of whole-farm balances in WI compared with QC. Subsequent simulations to maximize FNI under increasing constraints on nutrient balances revealed that it was possible to reduce P balance, N balance, and both together by up to 33% without a substantial effect on FNI. Partial reduction in P balance reduced N balance (synergetic effect) in WI, but increased N balance (antagonistic effect) in QC. In contrast, reducing N balance increased P balance in both regions, albeit in different magnitudes. The regional comparison highlighted the importance of site-specific conditions on modeling outcomes. This study demonstrated that even when recommended guidelines are followed for herd nutrition and crop fertilization, the optimization of herd feeding, cropping, and manure spreading as a single unit of management may help identify management options that preserve FNI, while substantially reducing whole-farm nutrient balance.


Asunto(s)
Alimentación Animal , Granjas/economía , Nitrógeno/metabolismo , Fósforo/metabolismo , Animales , Bovinos , Industria Lechera , Granjas/organización & administración , Femenino , Fertilizantes , Renta , Estiércol , Quebec , Wisconsin
18.
J Dairy Sci ; 100(8): 6592-6601, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28601444

RESUMEN

Nitrogen efficiency (milk N/dietary N; NE) can be used as a tool for the nutritional, economic, and environmental management of dairy farms. The aim of this study was to identify the characteristics of herds with varying NE and assess the effect on farm profitability. One hundred dairy herds located in Québec, Canada, comprising on average 42 ± 18 cows in lactation were visited from October 2014 to June 2015. Feed intake was measured over 24 h. Samples of each feedstuff were taken and sent to a commercial laboratory for analysis of chemical composition. Feeding management and feed prices were recorded. Milk yield was recorded and milk samples were collected over 2 consecutive milkings. Fat, protein, and milk urea N were analyzed. Balances of metabolizable protein (MP; MP supply - MP requirements) and rumen degradable protein (RDP; RDP supply - RDP requirement) were calculated. A hierarchical cluster analysis was conducted and allowed grouping the farms by their NE. Four clusters were identified with an average NE of 22.1 (NE22), 26.9 (NE27), 30.0 (NE30), and 35.8% (NE36). Herds in clusters NE30 and NE36 were fed diets with greater concentrations of starch, net energy for lactation, and nonfiber carbohydrates than those in the other 2 clusters. Moreover, the average proportion of corn silage was lower for herds in cluster NE22 compared with NE30 and NE36 (8.23 vs. 31.8 and 31.3% of total forages, respectively). In addition, crude protein of the diets declined from an average of 16.0 to 14.9% with increasing NE among clusters. Average dry matter intake declined from 26.1 to 22.5 kg/d as NE of clusters increased. Herds in cluster NE22 had lower yields of milk (28.7 vs. 31.8 kg/d), fat (1.15 vs. 1.29 kg/d), and protein (0.94 vs. 1.05 kg/d) than the other clusters. Also, milk urea N was greater for farms in cluster NE22 (13.2 mg/dL) than for farms in the other clusters (11.4 mg/dL). Furthermore, MP and RDP balances decreased from 263.2 to -153.7 g/d and from 594.7 to 486.9 g/d, respectively, with increasing NE among clusters. Income over feed cost increased from $14.3 to $17.3/cow per day (Can$) as NE among clusters augmented. Results from this study showed that some farms were able to achieve high NE by using lower levels of dietary N and having cows with lower DMI while maintaining milk performance. These farms had a potentially lower environmental impact, and they were more profitable.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Bovinos/fisiología , Proteínas en la Dieta/metabolismo , Lactancia/fisiología , Nitrógeno/metabolismo , Animales , Dieta/veterinaria , Granjas , Femenino , Leche , Nitrógeno/análisis , Quebec , Rumen
19.
J Dairy Sci ; 100(7): 5957-5973, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28501399

RESUMEN

Organic agriculture continues to expand in the United States, both in total hectares and market share. However, management practices used by dairy organic producers, and their resulting environmental impacts, vary across farms. This study used a partial life cycle assessment approach to estimate the effect of different feeding strategies and associated crop production on greenhouse gas emissions (GHG) from Wisconsin certified organic dairy farms. Field and livestock-driven emissions were calculated using 2 data sets. One was a 20-yr data set from the Wisconsin Integrated Cropping System Trial documenting management inputs, crop and pasture yields, and soil characteristics, used to estimate field-level emissions from land associated with feed production (row crop and pasture), including N2O and soil carbon sequestration. The other was a data set summarizing organic farm management in Wisconsin, which was used to estimate replacement heifer emission (CO2 equivalents), enteric methane (CH4), and manure management (N2O and CH4). Three combinations of corn grain (CG) and soybean (SB) as concentrate (all corn = 100% CG; baseline = 75% CG + 25% SB; half corn = 50% CG + 50% SB) were assigned to each of 4 representative management strategies as determined by survey data. Overall, GHG emissions associated with crop production was 1,297 ± 136 kg of CO2 equivalents/t of ECM without accounting for soil carbon changes (ΔSC), and GHG emission with ΔSC was 1,457 ± 111 kg of CO2 equivalents/t of ECM, with greater reliance on pasture resulting in less ΔSC. Higher levels of milk production were a major driver associated with reduction in GHG emission per metric tonne of ECM. Emissions per metric tonne of ECM increased with increasing proportion of SB in the ration; however, including SB in the crop rotation decreased N2O emission per metric tonne of ECM from cropland due to lower applications of organically approved N fertility inputs. More SB at the expense of CG in the ration reduced enteric CH4 emission per metric tonne of ECM (because of greater dietary fat content) but increased N2O emission per metric tonne of ECM from manure (because of greater N content). An increased reliance on pasture for feed at the expense of grain resulted in decreased in milk production, subsequently leading to substantially higher emissions per metric tonne of ECM.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Bovinos/metabolismo , Efecto Invernadero , Metano/biosíntesis , Agricultura Orgánica , Animales , Industria Lechera , Granjas , Femenino , Leche , Wisconsin
20.
J Dairy Sci ; 100(7): 5434-5448, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28501404

RESUMEN

The objectives of this study were to measure performance responses and to evaluate indictors of N utilization in late-lactation cows fed diets with incremental reductions in crude protein (CP) concentration. Holstein cows (n = 128; 224 ± 54 d in milk) were stratified by parity and days pregnant (86 ± 25 d) and randomly assigned to 1 of 16 pens in a randomized complete block design. For 3 wk, all cows received a covariate diet containing 16.9% CP [dry matter (DM) basis]. For the subsequent 12 wk, pens were randomly assigned to 1 of 4 treatments that contained 16.2, 14.4, 13.1, or 11.8% CP (DM basis). Diets were offered once daily and contained 32.5% corn silage, 32.5% alfalfa silage, 13.5% high-moisture corn, and 21.5% concentrate mix. A reduction in dietary CP was achieved by replacing soybean meal with soy hulls in the concentrate mix (DM basis). Dry matter intake, milk urea N (MUN; mg/dL), and the yield of milk urea N (g/d) decreased linearly with dietary CP. Compared with a 16.2% CP diet, a 14.4% CP diet did not alter milk yield throughout the study, but the 13.1 and 11.8% CP diets reduced milk yield after 4 and 1 wk, respectively. Furthermore, milk protein percentage was reduced for all dietary CP less than 16.2%, but this negative effect was temporary and disappeared after 7 wk for the 14.4% CP diet. In contrast, MUN adjusted to a new steady state within 1 wk for all dietary treatments. Modeling quadratic responses with a plateau led to predictions of no reduction in fat- and protein-corrected milk (32.6 kg/d) and yields of fat (1.31 kg/d), lactose (1.49 kg/d), and true protein (1.12 kg/d) until dietary CP decreased below 15.5, 15.3, 15.9, and 16.2%, respectively. In this study, MUN and the yield of MUN were highly correlated with N intake, milk protein yield, and fat- and protein-corrected milk. Surprisingly, N use efficiency (milk protein N/intake N) was not correlated with any variables related to N utilization and reached an apparent upper limit of approximately 30%. Although this observation may be associated with feeding diets deficient in metabolizable protein, late-lactation cows in this study adjusted to low dietary CP concentration better than anticipated as milk production was 2.6, 3.6, 6.4, and 8.0 kg/d higher than National Research Council (2001)-predicted metabolizable protein-allowable milk for dietary CP of 16.2, 14.4, 13.1, and 11.8%, respectively.


Asunto(s)
Dieta/veterinaria , Proteínas en la Dieta/farmacología , Lactancia , Nitrógeno/metabolismo , Ensilaje , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Bovinos , Proteínas en la Dieta/administración & dosificación , Femenino , Leche/química , Paridad , Embarazo , Distribución Aleatoria , Rumen , Zea mays
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...