Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 14(19)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36230673

RESUMEN

The survival of patients with solid tumors, such as prostate cancer (PCa), has been limited and fleeting with anti-angiogenic therapies. It was previously thought that the mechanism by which the vasculature regulates tumor growth was driven by a passive movement of oxygen and nutrients to the tumor tissue. However, previous evidence suggests that endothelial cells have an alternative role in changing the behavior of tumor cells and contributing to cancer progression. Determining the impact of molecular signals/growth factors released by endothelial cells (ECs) on established PCa cell lines in vitro and in vivo could help to explain the mechanism by which ECs regulate tumor growth. Using cell-conditioned media collected from HUVEC (HUVEC-CM), our data show the stimulated proliferation of all the PCa cell lines tested. However, in more aggressive PCa cell lines, HUVEC-CM selectively promoted migration and invasion in vitro and in vivo. Using a PCa-cell-line-derived xenograft model co-injected with HUVEC or preincubated with HUVEC-CM, our results are consistent with the in vitro data, showing enhanced tumor growth, increased tumor microvasculature and promoted metastasis. Gene set enrichment analyses from RNA-Seq gene expression profiles showed that HUVEC-CM induced a differential effect on gene expression when comparing low versus highly aggressive PCa cell lines, demonstrating epigenetic and migratory pathway enrichments in highly aggressive PCa cells. In summary, paracrine stimulation by HUVEC increased PCa cell proliferation and tumor growth and selectively promoted migration and metastatic potential in more aggressive PCa cell lines.

2.
PLoS One ; 15(6): e0233899, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32584883

RESUMEN

Studies of the normal functions and diseases of the prostate request in vivo models that maintain the tissue architecture and the multiple-cell type compartments of human origin in order to recapitulate reliably the interactions of different cell types. Cell type-specific transcriptomes are critical to reveal the roles of each cell type in the functions and diseases of the prostate. A primary prostate tissue xenograft model was developed using fresh human prostate tissue specimens transplanted onto male mice that were castrated surgically and implanted with a device to maintain circulating testosterone levels comparable to adult human males. Endothelial cells and epithelial cells were isolated from 7 fresh human prostate tissue specimens and from primary tissue xenografts established from 9 fresh human prostate tissue specimens, using antibody-conjugated magnetic beads specific to human CD31 and human EpCAM, respectively. Transcriptomes of endothelial, epithelial and stromal cell fractions were obtained using RNA-Seq. Global and function-specific gene expression profiles were compared in inter-cell type and inter-tissue type manners. Gene expression profiles in the individual cell types isolated from xenografts were similar to those of cells isolated from fresh tissue, demonstrating the value of the primary tissue xenograft model for studies of the inter-relationships between prostatic cell types and the role of such inter-relationships in organ development, disease progression, and response to drug treatments.


Asunto(s)
Células Endoteliales/metabolismo , Xenoinjertos/citología , Próstata/citología , Transcriptoma , Animales , Células Endoteliales/citología , Molécula de Adhesión Celular Epitelial/metabolismo , Humanos , Masculino , Ratones , Ratones Desnudos , Modelos Animales , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo
3.
Angiogenesis ; 20(1): 25-38, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27679502

RESUMEN

BACKGROUND: Sex-related differences in the role of androgen have been reported in cardiovascular diseases and angiogenesis. Moreover, androgen receptor (AR) has been causally involved in the homeostasis of human prostate endothelial cells. However, levels of expression, functionality and biological role of AR in male- and female-derived human endothelial cells (ECs) remain poorly characterized. The objectives of this work were (1) to characterize the functional expression of AR in male- and female-derived human umbilical vein endothelial cell (HUVEC), and (2) to specifically analyze the biological effects of DHT, and the role of AR on these effects, in male-derived HUVECs (mHUVECs). RESULTS: Immunohistochemical analyses of tissue microarrays from benign human tissues confirmed expression of AR in ECs from several androgen-regulated and non-androgen-regulated human organs. Functional expression of AR was validated in vitro in male- and female-derived HUVECs using quantitative RT-PCR, immunoblotting and AR-mediated transcriptional activity assays. Our results indicated that functional expression of AR in male- and female-derived HUVECs was heterogeneous, but not sex dependent. In parallel, we analyzed in depth the biological effects of DHT, and the role of AR on these effects, on proliferation, survival and tube formation capacity in mHUVECs. Our results indicated that DHT did not affect mHUVEC survival; however, DHT stimulated mHUVEC proliferation and suppressed mHUVEC tube formation capacity. While the effect of DHT on proliferation was mediated through AR, the effect of DHT on tube formation did not depend on the presence of a functional AR, but rather depended on the ability of mHUVECs to further metabolize DHT. CONCLUSIONS: (1) Heterogeneous expression of AR in male- and female-derived HUVEC could define the presence of functionally different subpopulations of ECs that may be affected differentially by androgens, which could explain, at least in part, the pleiotropic effects of androgen on vascular biology, and (2) DHT, and metabolites of DHT, generally thought to represent progressively more hydrophilic products along the path to elimination, may have differential roles in modulating the biology of human ECs through AR-dependent and AR-independent mechanisms, respectively.


Asunto(s)
Andrógenos/farmacología , Homeostasis/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Receptores Androgénicos/metabolismo , Androstanoles/metabolismo , Androsterona/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Dihidrotestosterona/química , Dihidrotestosterona/farmacología , Femenino , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Masculino , Modelos Biológicos , Neovascularización Fisiológica/efectos de los fármacos , Especificidad de Órganos/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Androgénicos/genética
4.
Endocrinology ; 149(6): 2959-69, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18292195

RESUMEN

Androgen deprivation causes a reduction of blood flow in the prostate gland that precedes temporally apoptosis of the epithelium. The acute response of prostate endothelial cells to androgen deprivation suggested they represent a primary target for androgen. However, rat prostate endothelial cells were reported not to express androgen receptor (AR), and the role of the androgen axis in human prostate endothelial cell (HPEC) homeostasis was poorly characterized. In this study AR expression was detected in HPEC in vivo in clinical specimens of benign prostate and prostate cancer, and AR function as a transcription factor was demonstrated in HPEC in primary xenografts of human benign prostate tissue transplanted into severe combined immunodeficient mice by iv administration of adenoviral mouse mammary tumor virus-driven luciferase expression vector. AR expression and functionality were maintained in vitro in primary cultures of HPEC that coexpressed CD31, CD34, von Willebrand factor, intercellular adhesion molecule, vascular endothelial growth factor receptor 1, and vascular endothelial growth factor receptor 2 but did not express prostate-specific antigen. AR expression in primary cultures of HPEC isolated from surgical specimens of benign prostate was validated using RT-PCR, cDNA sequencing, immunocytochemistry, and Western blot analyses. Scatchard analyses demonstrated a single ligand-binding site for R1881 in primary cultures of HPEC, with dissociation constant of 0.25 nm, and AR-mediated transcriptional activity was demonstrated using adenoviral mouse mammary tumor virus-driven luciferase reporters. Dihydrotestosterone increased proliferation in primary cultures of HPEC in a dose-dependent manner without modulating endothelial tube formation in Matrigel (BD Biosciences, Bedford, MA). Therefore, HPECs express functional AR, and androgen plays a direct role in modulating HPEC biology.


Asunto(s)
Células Endoteliales/fisiología , Próstata/fisiología , Receptores Androgénicos/fisiología , Animales , Células Endoteliales/trasplante , Endotelio Vascular/fisiología , Homeostasis , Humanos , Masculino , Ratones , Ratones SCID , Próstata/trasplante , Ratas , Receptores Androgénicos/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Trasplante Heterólogo , Venas Umbilicales/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...