Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Geoderma ; 363: 114143, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32255838

RESUMEN

While soil microbial ecology, soil organic carbon (SOC) and soil physical quality are widely understood to be interrelated - the underlying drivers of emergent properties, from land management to biochemistry, are hotly debated. Biological binding agents, microbial exudates, or 'extracellular polymeric substances' (EPS) in soil are now receiving increased attention due to several of the existing methodological challenges having been overcome. We applied a recently developed approach to quantify soil EPS, as extracellular protein and extracellular polysaccharide, on the well-characterised soils of the Highfield Experiment, Rothamsted Research, UK. Our aim was to investigate the links between agricultural land use, SOC, transient binding agents known as EPS, and their impacts on soil physical quality (given by mean weight diameter of water stable aggregates; MWD). We compared the legacy effects from long-term previous land-uses (unfertilised grassland, fertilised arable, and fallow) which were established > 50 years prior to investigation, crossed with the same current land-uses established for a duration of only 2.5 years prior to sampling. Continuously fallow and grassland soils represented the poorest and greatest states of structural integrity, respectively. Total SOC and N were found to be affected by both previous and current land-uses, while extractable EPS and MWD were driven primarily by the current land-use. Land-use change between these two extremes (fallow â†’ grass; grass â†’ fallow) resulted in smaller SOC differences (64% increase or 37% loss) compared to MWD (125% increase or 78% loss). SOC concentration correlated well to MWD (adjusted R 2 = 0.72) but the greater SOC content from previous grassland was not found to contribute directly to the current stability (p < 0.05). Our work thus supports the view that certain distinct components of SOC, rather than the total pool, have disproportionately important effects on a soil's structural stability. EPS-protein was more closely related to aggregate stability than EPS-polysaccharide (p values of 0.002 and 0.027, respectively), and ranking soils with the 5 greatest concentrations of EPS-protein to their corresponding orders of stability (MWD) resulted in a perfect match. We confirmed that both EPS-protein and EPS-polysaccharide were transient fractions: supporting the founding models for aggregate formation. We suggest that management of transient binding agents such as EPS -as opposed to simply increasing the total SOC content- may be a more feasible strategy to improve soil structural integrity and help achieve environmental objectives.

2.
Eur J Soil Sci ; 69(4): 604-612, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30174536

RESUMEN

Assessments of changes in soil organic carbon (SOC) stocks depend heavily on reliable values of SOC content obtained by automated high-temperature C analysers. However, historical as well as current research often relies on indirect SOC estimates such as loss-on-ignition (LOI). In this study, we revisit the conversion of LOI to SOC using soil from two long-term agricultural field experiments and one arable field with different contents of SOC, clay and particles <20 µm (Fines20). Clay-, silt- and sand-sized fractions were isolated from the arable soil. Samples were analysed for texture, LOI (500°C for 4 hours) and SOC by dry combustion. For a topsoil with 2 g C and 30 g clay 100 g-1 soil, converting LOI to SOC by the conventional factor 0.58 overestimated the SOC stock by 45 Mg C ha-1. The error increased with increasing contents of clay and Fines20. Converting LOI to SOC by a regression model underestimated the SOC stock by 5 Mg C ha-1 at small clay and Fines20 contents and overestimated the SOC stock by 8 Mg C ha-1 at large contents. This was due to losses of structural water from clay minerals. The best model to convert LOI to SOC incorporated clay content. Evaluating this model against an independent dataset gave a root mean square error and mean error of 0.295 and 0.125 g C 100 g-1, respectively. To avoid misleading accounts of SOC stocks in agricultural soils, we recommend re-analysis of archived soil samples for SOC using high-temperature dry combustion methods. Where archived samples are not available, accounting for clay content improves conversion of LOI to SOC considerably. The use of the conventional conversion factor 0.58 is antiquated and provides misleading estimates of SOC stocks. HIGHLIGHTS: Assessment of SOC contents is often based on less accurate methods such as LOI.Reliable accounts of changes in SOC stocks remain high on the agenda (4‰ initiative).Conversion of LOI to SOC is considerably improved by accounting for clay content.Converting LOI to SOC by the conventional factor 0.58 leads to grossly overestimated SOC stocks.

3.
Eur J Agron ; 91: 74-83, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29129966

RESUMEN

This work compared root length distributions of different winter wheat genotypes with soil physical measurements, in attempting to explain the relationship between root length density and soil depth. Field experiments were set up to compare the growth of various wheat lines, including near isogenic lines (Rht-B1a Tall NIL and Rht-B1c Dwarf NIL) and wheat lines grown commercially (cv. Battalion, Hystar Hybrid, Istabraq, and Robigus). Experiments occurred in two successive years under rain fed conditions. Soil water content, temperature and penetrometer resistance profiles were measured, and soil cores taken to estimate vertical profiles of pore distribution, and root number with the core-break method and by root washing. Root length distributions differed substantially between years. Wetter soil in 2014/2015 was associated with shallower roots. Although there was no genotypic effect in 2014/2015, in 2013/2014 the dwarf wheat had the most roots at depth. In the shallower layers, some wheat lines, especially Battalion, seemed better at penetrating non-structured soil. The increase in penetrometer resistance with depth was a putative explanation for the rapid decrease in root length density with depth. Differences between the two years in root profiles were greater than those due to genotype, suggesting that comparisons of different genotypic effects need to take account of different soil conditions and seasonal differences. We also demonstrate that high yields are not necessarily linked to resource acquisition, which did not seem to be limiting in the low yielding dwarf NIL.

4.
Plant Soil ; 415(1): 407-422, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-32025056

RESUMEN

BACKGROUND AND AIMS: There is an urgent need to develop new high throughput approaches to phenotype roots in the field. Excavating roots to make direct measurements is labour intensive. An alternative to excavation is to measure soil drying profiles and to infer root activity. METHODS: We grew 23 lines of wheat in 2013, 2014 and 2015. In each year we estimated soil water profiles with electrical resistance tomography (ERT), electromagnetic inductance (EMI), penetrometer measurements and measurements of soil water content. We determined the relationships between the measured variable and soil water content and matric potential. RESULTS: We found that ERT and penetrometer measurements were closely related to soil matric potential and produced the best discrimination between wheat lines. We found genotypic differences in depth of water uptake in soil water profiles and in the extent of surface drying. CONCLUSIONS: Penetrometer measurements can provide a reliable approach to comparing soil drying profiles by different wheat lines, and genotypic rankings are repeatable across years. EMI, which is more sensitive to soil water content than matric potential, and is less effective in drier soils than the penetrometer or ERT, nevertheless can be used to rapidly screen large populations for differences in root activity.

5.
Eur J Soil Sci ; 67(4): 421-430, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27478400

RESUMEN

Soil organic carbon (SOC) and nitrogen (N) contents are controlled partly by plant inputs that can be manipulated in agricultural systems. Although SOC and N pools occur mainly in the topsoil (upper 0.30 m), there are often substantial pools in the subsoil that are commonly assumed to be stable. We tested the hypothesis that contrasting long-term management systems change the dynamics of SOC and N in the topsoil and subsoil (to 0.75 m) under temperate conditions. We used an established field experiment in the UK where control grassland was changed to arable (59 years before) and bare fallow (49 years before) systems. Losses of SOC and N were 65 and 61% under arable and 78 and 74% under fallow, respectively, in the upper 0.15 m when compared with the grass land soil, whereas at 0.3-0.6-m depth losses under arable and fallow were 41 and 22% and 52 and 35%, respectively. The stable isotopes 13C and 15N showed the effects of different treatments. Concentrations of long-chain n-alkanes C27, C29 and C31 were greater in soil under grass than under arable and fallow. The dynamics of SOC and N changed in both topsoil and subsoil on a decadal time-scale because of changes in the balance between inputs and turnover in perennial and annual systems. Isotopic and geochemical analyses suggested that fresh inputs and decomposition processes occur in the subsoil. There is a need to monitor and predict long-term changes in soil properties in the whole soil profile if soil is to be managed sustainably. HIGHLIGHTS: Land-use change affects soil organic carbon and nitrogen, but usually the topsoil only is considered.Grassland cultivated to arable and fallow lost 13-78% SOC and N to 0.6 m depth within decades.Isotopic and biomarker analyses suggested changes in delivery and turnover of plant-derived inputs.The full soil profile must be considered to assess soil quality and sustainability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...