Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 3: 1683, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23619058

RESUMEN

We report on the evaluation of a novel grass hybrid that provides efficient forage production and could help mitigate flooding. Perennial ryegrass (Lolium perenne) is the grass species of choice for most farmers, but lacks resilience against extremes of climate. We hybridised L. perenne onto a closely related and more stress-resistant grass species, meadow fescue Festuca pratensis. We demonstrate that the L. perenne × F. pratensis cultivar can reduce runoff during the events by 51% compared to a leading UK nationally recommended L. perenne cultivar and by 43% compared to F. pratensis over a two year field experiment. We present evidence that the reduced runoff from this Festulolium cultivar was due to intense initial root growth followed by rapid senescence, especially at depth. Hybrid grasses of this type show potential for reducing the likelihood of flooding, whilst providing food production under conditions of changing climate.


Asunto(s)
Inundaciones , Raíces de Plantas/metabolismo , Poaceae/metabolismo , Agua/metabolismo
2.
J Exp Bot ; 61(13): 3543-51, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20591896

RESUMEN

To investigate the influence of different growing substrates (two mineral, two organic) on root xylem ABA concentration ([ABA](root)) and the contribution of the drying root system to total sap flow during partial rootzone drying (PRD), sunflower (Helianthus annuus L.) shoots were grafted onto the root systems of two plants grown in separate pots. Sap flow through each hypocotyl was measured below the graft union when one pot ('wet') was watered and other ('dry') was not. Each substrate gave unique relationships between dry pot matric potential (Psi(soil)), volumetric water content ((v)) or penetrometer resistance (Q) and either the fraction of photoperiod sap flow from roots in drying soil or [ABA](root). However, decreased relative sap flow, and increased [ABA](root), from roots in drying soil varied with root water potential (Psi(root)) more similarly across a range of substrates. The gradient between Psi(soil) and Psi(root) was greater in substrates with high sand or peat proportions, which may have contributed to a more sensitive response of [ABA](root) to Psi(soil) in these substrates. Whole plant transpiration was most closely correlated with the mean Psi(soil) of both pots, and then with detached leaf xylem ABA concentration. Although Psi(root) best predicted decreased relative sap flow, and increased [ABA](root), from roots in drying soil across a range of substrates, the inaccessibility of this variable in field studies requires a better understanding of how measurable soil variables (Psi(soil), (v), Q) affect Psi(root).


Asunto(s)
Ácido Abscísico/metabolismo , Desecación , Helianthus/fisiología , Raíces de Plantas/fisiología , Transducción de Señal , Suelo , Agua/metabolismo , Transporte Biológico , Helianthus/metabolismo , Fotoperiodo , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Transpiración de Plantas/fisiología , Suelo/análisis , Agua/análisis , Xilema/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA