Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Naunyn Schmiedebergs Arch Pharmacol ; 397(3): 1455-1476, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37736836

RESUMEN

With cancer being a leading cause of death globally, there is an urgent need to improve therapeutic strategies and identify effective chemotherapeutics. This study aims to highlight the potential of crocetin, a natural product derived from certain plants, as an anticancer agent. It was  conducted an extensive review of the existing literature to gather and analyze the most recent data on the chemical properties of crocetin and its observed effects in various in vitro and in vivo studies. The study  particularly focused on studies that examined crocetin's impact on cell cycle dynamics, apoptosis, caspases and antioxidant enzyme levels, tumor angiogenesis, inflammation, and overall tumor growth. Crocetin exhibited diverse anti-tumorigenic activities including inhibition of tumor cell proliferation, apoptosis induction, angiogenesis suppression, and potentiation of chemotherapy. Multiple cellular and molecular pathways such as the PI3K/Akt, MAPK and NF-κB were modulated by it. Crocetin demonstrates promising anti-cancer properties and offers potential as an adjunctive or alternative therapy in oncology. More large-scale, rigorously designed clinical trials are needed to establish therapeutic protocols and ascertain the comprehensive benefits and safety profile of crocetin in diverse cancer types.


Asunto(s)
Neoplasias , Fosfatidilinositol 3-Quinasas , Vitamina A/análogos & derivados , Humanos , Vitamina A/uso terapéutico , Carotenoides/farmacología , Carotenoides/uso terapéutico , Antioxidantes/farmacología , Neoplasias/tratamiento farmacológico , Apoptosis
2.
Int J Mol Sci ; 24(21)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37958772

RESUMEN

Breast cancer (BC) is the most common malignancy among women worldwide. In recent years, significant progress has been made in BC therapy. However, serious side effects resulting from the use of standard chemotherapeutic drugs, as well as the phenomenon of multidrug resistance (MDR), limit the effectiveness of approved therapies. Advanced research in the BC area is necessary to create more effective and safer forms of therapy to improve the outlook for individuals diagnosed with this aggressive neoplasm. For decades, plants and natural products with anticancer properties have been successfully utilized in treating various medical conditions. Anthraquinone derivatives are tricyclic secondary metabolites of natural origin that have been identified in plants, lichens, and fungi. They represent a few botanical families, e.g., Rhamnaceae, Rubiaceae, Fabaceae, Polygonaceae, and others. The review comprehensively covers and analyzes the most recent advances in the anticancer activity of 1,8-dihydroanthraquinone derivatives (emodin, aloe-emodin, hypericin, chrysophanol, rhein, and physcion) applied both individually, or in combination with other chemotherapeutic agents, in in vitro and in vivo BC models. The application of nanoparticles for in vitro and in vivo evidence in the context of 1,8-dihydroanthraquinone derivatives was also described.


Asunto(s)
Neoplasias de la Mama , Emodina , Polygonaceae , Rheum , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Antraquinonas/farmacología , Antraquinonas/uso terapéutico , Extractos Vegetales
3.
Molecules ; 28(21)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37959784

RESUMEN

Emodin-8-O-glucoside (E-8-O-G) is a glycosylated derivative of emodin that exhibits numerous biological activities, including immunomodulatory, anti-inflammatory, antioxidant, hepatoprotective, or anticancer activities. However, there are no reports on the activity of E-8-O-G against cancers of the nervous system. Therefore, the aim of the study was to investigate the antiproliferative and cytotoxic effect of E-8-O-G in the SK-N-AS neuroblastoma, T98G human glioblastoma, and C6 mouse glioblastoma cancer cells. As a source of E-8-O-G the methanolic extract from the aerial parts of Reynoutria japonica Houtt. (Polygonaceae) was used. Thanks to the application of centrifugal partition chromatography (CPC) operated in the descending mode using a mixture of petroleum ether:ethyl acetate:methanol:water (4:5:4:5 v/v/v/v) and a subsequent purification with preparative HPLC, E-8-O-G was obtained in high purity in a sufficient quantity for the bioactivity tests. Assessment of the cancer cell viability and proliferation were performed with the MTT (3-(bromide 4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium), CTG (CellTiter-Glo®) and BrdU (5-bromo-2'-deoxyuridine) assays, respectively. E-8-O-G inhibits the viability and proliferation of SK-N-AS neuroblastoma, T98G human glioblastoma multiforme, and C6 mouse glioblastoma cells dose-dependently. E-8-O-G seems to be a promising natural antitumor compound in the therapy of nervous system tumors.


Asunto(s)
Emodina , Glioblastoma , Neoplasias del Sistema Nervioso , Neuroblastoma , Animales , Ratones , Humanos , Glucósidos/farmacología , Glioblastoma/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/química
4.
Cell Death Dis ; 14(8): 509, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37553320

RESUMEN

In breast cancer, dysregulated TP53 expression signatures are a better predictor of chemotherapy response and survival outcomes than TP53 mutations. Our previous studies have shown that high levels of Δ40p53 are associated with worse disease-free survival and disruption of p53-induced DNA damage response in breast cancers. Here, we further investigated the in vitro and in vivo implications of Δ40p53 expression in breast cancer. We have shown that genes associated with cell differentiation are downregulated while those associated with stem cell regulation are upregulated in invasive ductal carcinomas expressing high levels of Δ40p53. In contrast to p53, endogenous ∆40p53 co-localised with the stem cell markers Sox2, Oct4, and Nanog in MCF-7 and ZR75-1 cell lines. ∆40p53 and Sox2 co-localisation was also detected in breast cancer specimens. Further, in cells expressing a high ∆40p53:p53 ratio, increased expression of stem cell markers, greater mammosphere and colony formation capacities, and downregulation of miR-145 and miR-200 (p53-target microRNAs that repress stemness) were observed compared to the control subline. In vivo, a high ∆40p53:p53 ratio led to increased tumour growth, Ki67 and Sox2 expression, and blood microvessel areas in the vehicle-treated mice. High expression of ∆40p53 also reduced tumour sensitivity to doxorubicin compared to control tumours. Enhanced therapeutic efficacy of doxorubicin was observed when transiently targeting Δ40p53 or when treating cells with OTSSP167 with concomitant chemotherapy. Taken together, high Δ40p53 levels induce tumour growth and may promote chemoresistance by inducing a stemness phenotype in breast cancer; thus, targeting Δ40p53 in tumours that have a high Δ40p53:p53 ratio could enhance the efficacy of standard-of-care therapies such as doxorubicin.


Asunto(s)
MicroARNs , Neoplasias , Animales , Ratones , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Línea Celular Tumoral , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , MicroARNs/genética , MicroARNs/metabolismo , Isoformas de Proteínas/metabolismo
5.
Med Sci Monit ; 29: e940550, 2023 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-37393427

RESUMEN

Breast cancer (BC) is the most frequently diagnosed malignancy in women worldwide. Despite the wide variety of therapeutic methods for BC, their results are not satisfying, especially in triple-negative breast cancer (TNBC) patients. One of the main challenges in efficient oncology is achieving optimal conditions to evaluate a molecular genotype and phenotype of a tumor. Therefore, new therapeutic strategies are urgently needed. Animal models are an important tool for the molecular and functional characterization of BC, and for the development of targeted BC therapies. Zebrafish, as a promising screening model organism, has been widely applied in the development of patient-derived xenografts (PDX) for the discovery of novel potential antineoplastic drugs. Moreover, the generation of BC xenografts in zebrafish embryos/larvae allows for a description of the tumor growth, cell invasion, and systemic interaction between tumor and host in vivo without immunogenic rejection of transplanted cancer cells. Interestingly, zebrafish can be genetically manipulated and their genome has been fully sequenced. Genetic studies in zebrafish have described new genes and molecular pathways involved in BC carcinogenesis. Thus, the zebrafish in vivo model is becoming an exquisite alternative for metastatic research and for discovering new active agents for BC therapy. Herein, we systematically reviewed the recent cutting-edge advances in zebrafish BC models for carcinogenesis, metastasis, and drug screening. This article aims to review the current status of the role of the zebrafish (Danio reiro) in preclinical and clinical models of biomarker identification and drug targeting, and developments in personalized medicine in BC.


Asunto(s)
Medicina de Precisión , Neoplasias de la Mama Triple Negativas , Femenino , Humanos , Animales , Pez Cebra/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Biomarcadores , Carcinogénesis
6.
J Clin Med ; 12(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36615173

RESUMEN

Triple-negative breast cancers (TNBCs) are histologically heterogenic invasive carcinomas of no specific type that lack distinctive histological characteristics. The prognosis for women with TNBC is poor. Regardless of the applied treatments, recurrences and deaths are observed 3-5 years after the diagnosis. Thus, new diagnostic markers and targets for personalized treatment are needed. The subject of our study-the Kaiso transcription factor has been found to correlate with the invasion and progression of breast cancer. The publicly available TCGA breast cancer cohort containing Illumina HiSeq RNAseq and clinical data was explored in the study. Additionally, Kaiso protein expression was assessed in formalin-fixed and paraffin-embedded tissue archive specimens using the tissue microarray technique. In this retrospective study, Kaiso protein expression (nuclear localization) was compared with several clinical factors in the cohort of 103 patients with TNBC with long follow-up time. In univariate and multivariate analysis, high Kaiso protein but not mRNA expression was correlated with better overall survival and disease-free survival, as well as with premenopausal age. The use of radiotherapy was correlated with better disease-free survival (DFS) and overall survival (OS). However, given the heterogeneity of TNBC and context-dependent molecular diversity of Kaiso signaling in cancer progression, these results must be taken with caution and require further studies.

7.
Cells ; 13(1)2023 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-38201274

RESUMEN

Gentiopicroside (GPS) is a leading component of several plant species from the Gentianaceae botanical family. As a compound with plenty of biological activities and a component of herbal drugs, GPS has an important role in the regulation of physiological processes in humans. The results of recently published scientific studies underline a meaningful role of this molecule as an active factor in metabolic pathways and mechanisms, which may have an influence in the treatment of different diseases, including digestive tract disorders, malignant changes, neurological disorders, microbial infections, bone formation disorders, inflammatory conditions, and others. This review aims to collect previously published reports on the biological properties of GPS as a single compound that were confirmed by in vitro and in vivo studies, and to draw attention to the newly discovered role of this bitter-tasting secoiridoid. Thanks to these properties, the research on this substance could be revisited.


Asunto(s)
Enfermedades Óseas , Glucósidos Iridoides , Humanos , Glucósidos Iridoides/farmacología , Osteogénesis , Proyectos de Investigación
8.
Pharmacol Rep ; 74(5): 1011-1024, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35900723

RESUMEN

BACKGROUND: Breast cancer (BC) is the most common malignancy and the leading cause of cancer-related death in women worldwide. Sirtuin inhibitors (SIRTi), belonging to the histone deacetylase inhibitors group (HDIs), are potent epigenetic drugs that have been investigated for therapeutic use in different clinical disorders, including hematological malignancies and solid tumors. METHODS: The influence of cambinol (CAM; SIRTi) used individually or in combination with standard chemotherapeutic paclitaxel (PAX) on viability (MTT assay), proliferation (BrdU assay), induction of apoptosis and cell cycle arrest (FACS analysis) was determined in MCF7 luminal and MDA-MB-231 triple-negative breast cancer (TNBC) cells. The types of pharmacological drug-drug interaction between CAM and PAX were determined by an exact and rigorous pharmacodynamic method-an isobolography, to determine the presence of synergism, addition or antagonism between analyzed drugs using a variety of fixed-dose ratios. RESULTS: The combination of CAM and PAX at a fixed ratio of 1:1 exerted additive interaction in the viability of MCF7 and MDA-MB-231 BC cells. Both active agents used separately reduced viability and proliferation of BC cells as well as induced apoptosis and cell cycle arrest. These effects were much more evident in MCF7 than in MDA-MB-231 BC cells. Additionally, CAM combined with PAX increased anti-cancer activity compared to PAX used alone. CONCLUSION: CAM might be considered a potential therapeutic agent individually or in combined therapy with PAX against luminal or TNBC.


Asunto(s)
Neoplasias de la Mama , Sirtuinas , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Paclitaxel/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Sirtuinas/farmacología , Sirtuinas/uso terapéutico , Bromodesoxiuridina/farmacología , Bromodesoxiuridina/uso terapéutico , Línea Celular Tumoral , Proliferación Celular , Ensayos Antitumor por Modelo de Xenoinjerto , Apoptosis
9.
Int J Mol Sci ; 23(12)2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35742901

RESUMEN

Breast cancer (BC) is a heterogeneous disease with different intrinsic subtypes. The most aggressive subtype of BC-triple-negative breast cancer (TNBC) is characterized by high heterogeneity and metastasis rate, poor prognosis and lack of therapeutic targets due to the absence of estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2. Targeted therapies have been approved for many other cancers and even other subtypes of BC, but treatment options for TNBC are still mainly limited to chemotherapy. Therefore, new, more effective treatment regimens are needed. Combined chemotherapy with two or more active agents is considered a promising anti-neoplasm tool in order to achieve better therapeutic response and reduce therapy-related adverse effects. The study demonstrated an antagonistic effect commonly used in TNBC therapy cytostatic drug-paclitaxel (PAX) and sirtuin inhibitor: cambinol (CAM) in BT-549, MDA-MB-468 and HCC1937 TNBC cell lines. The type of pharmacological interaction was determined by a precise and rigorous pharmacodynamic method-isobolographic analysis. The cytotoxic and anti-proliferative effects of CAM used alone or combined with PAX were determined utilizing 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and 5-bromo-2'-deoxyuridine (BrdU) assays, respectively. Induction of apoptosis in TNBC cell lines after PAX and CAM treatment applied individually or in combination was determined by flow cytometry (FACS) as a number of cells with active caspase-3. It has been observed that both agents used separately inhibit cell proliferation and induce apoptosis; however, applying them in combination ameliorated antiproliferative and pro-apoptotic effects in all analyzed TNBC cell lines. Our results demonstrate that CAM and PAX used in combination act antagonistically, limiting anti-cancer efficacy and showing the importance of preclinical testing.


Asunto(s)
Sirtuinas , Neoplasias de la Mama Triple Negativas , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Humanos , Naftalenos , Paclitaxel , Pirimidinonas , Neoplasias de la Mama Triple Negativas/patología
10.
Cells ; 11(7)2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35406775

RESUMEN

Breast carcinoma (BC) is the most commonly diagnosed type of cancer in women in the world. Although the advances in the treatment of BC patients are significant, numerous side effects, severe toxicity towards normal cells as well as the multidrug resistance (MDR) phenomenon restrict the effectiveness of the therapies used. Therefore, new active compounds which decrease the MDR, extend disease-free survival, thereby ameliorating the effectiveness of the current treatment regimens, are greatly needed. Histone deacetylase inhibitors (HDIs), including sirtuin inhibitors (SIRTi), are the epigenetic antitumor agents which induce a cytotoxic effect in different types of cancer cells, including BC cells. Currently, combined forms of therapy with two or even more chemotherapeutics are promising antineoplastic tools to obtain a better response to therapy and limit adverse effects. Thus, on the one hand, much more effective chemotherapeutics, e.g., sirtuin inhibitors (SIRTi), are in demand; on the other hand, combinations of accepted cytostatics are trialed. Thus, the aim of our research was to examine the combination effects of a renowned cytotoxic drug paclitaxel (PAX) and SIRT2 inhibitor AGK2 on the proliferation and viability of the T47D, MCF7, MDA-MB-231, MDA-MB-468, BT-549 and HCC1937 BC cells. Moreover, cell cycle arrest and apoptosis induction were explored. The type of pharmacological interactions between AGK2 and PAX in different molecular subtypes of BC cells was assessed using the advanced isobolographic method. Our findings demonstrated that the tested active agents singly inhibited viability and proliferation of BC cells as well as induced cell cycle arrest and apoptosis in the cell-dependent context. Additionally, AGK2 increased the antitumor effect of PAX in most BC cell lines. We observed that, depending on the BC cell lines, the combinations of tested drugs showed synergistic, additive or antagonistic pharmacological interaction. In conclusion, our studies demonstrated that the consolidated therapy with the use of AGK2 and PAX can be considered as a potential therapeutic regimen in the personalized cure of BC patients in the future.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Furanos , Paclitaxel , Quinolinas , Antineoplásicos/farmacología , Neoplasias de la Mama/patología , Femenino , Furanos/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Paclitaxel/farmacología , Quinolinas/farmacología , Sirtuina 2/antagonistas & inhibidores
11.
Int J Mol Sci ; 22(21)2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-34769241

RESUMEN

Reversible Nε-lysine acetylation/deacetylation is one of the most common post-translational modifications (PTM) of histones and non-histone proteins that is regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs). This epigenetic process is highly involved in carcinogenesis, affecting histone and non-histone proteins' properties and their biological functions. Some of the transcription factors, including tumor suppressors and oncoproteins, undergo this modification altering different cell signaling pathways. HDACs deacetylate their targets, which leads to either the upregulation or downregulation of proteins involved in the regulation of cell cycle and apoptosis, ultimately influencing tumor growth, invasion, and drug resistance. Therefore, epigenetic modifications are of great clinical importance and may constitute a new therapeutic target in cancer treatment. This review is aimed to present the significance of HDACs in carcinogenesis through their influence on functions of transcription factors, and therefore regulation of different signaling pathways, cancer progression, and metastasis.


Asunto(s)
Carcinogénesis/metabolismo , Ciclo Celular , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Factores de Transcripción/metabolismo , Acetilación , Carcinogénesis/genética , Carcinogénesis/patología , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Humanos , Metástasis de la Neoplasia , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patología , Factores de Transcripción/genética
12.
Cancers (Basel) ; 13(18)2021 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-34572928

RESUMEN

Vorinostat (SAHA), an inhibitor of class I and II of histone deacetylases, is the first histone deacetylase inhibitor (HDI) approved for the treatment of cutaneous T-cell lymphoma in 2006. HDIs are promising anticancer agents that inhibit the proliferation of many types of cancer cells including breast carcinoma (BC). BC is a heterogeneous disease with variable biological behavior, morphological features, and response to therapy. Although significant progress in the treatment of BC has been made, high toxicity to normal cells, serious side effects, and the occurrence of multi-drug resistance limit the effective therapy of BC patients. Therefore, new active agents which improve the effectiveness of currently used regimens are highly needed. This manuscript analyzes preclinical and clinical trials data of SAHA, applied individually or in combination with other anticancer agents, considering different histological subtypes of BC.

13.
Int J Mol Sci ; 22(16)2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34445277

RESUMEN

Breast cancer (BC) is the leading cause of death in women all over the world. Currently, combined chemotherapy with two or more agents is considered a promising anti-cancer tool to achieve better therapeutic response and to reduce therapy-related side effects. In our study, we demonstrated an antagonistic effect of cytostatic agent-cisplatin (CDDP) and histone deacetylase inhibitor: cambinol (CAM) for breast cancer cell lines with different phenotypes: estrogen receptor positive (MCF7, T47D) and triple negative (MDA-MB-231, MDA-MB-468). The type of pharmacological interaction was assessed by an isobolographic analysis. Our results showed that both agents used separately induced cell apoptosis; however, applying them in combination ameliorated antiproliferative effect for all BC cell lines indicating antagonistic interaction. Cell cycle analysis showed that CAM abolished cell cycle arrest in S phase, which was induced by CDDP. Additionally, CAM increased cell proliferation compared to CDDP used alone. Our data indicate that CAM and CDDP used in combination produce antagonistic interaction, which could inhibit anti-cancer treatment efficacy, showing importance of preclinical testing.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Cisplatino , Antagonismo de Drogas , Inhibidores de Histona Desacetilasas/farmacología , Modelos Biológicos , Naftalenos , Pirimidinonas , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Ciclo Celular/efectos de los fármacos , Cisplatino/antagonistas & inhibidores , Cisplatino/farmacología , Femenino , Humanos , Células MCF-7 , Naftalenos/antagonistas & inhibidores , Naftalenos/farmacología , Pirimidinonas/antagonistas & inhibidores , Pirimidinonas/farmacología
14.
Am J Cancer Res ; 11(6): 2821-2837, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34249430

RESUMEN

Successful treatment of advanced larynx squamous cell carcinoma (LSCC) remains a challenge, mainly due to limited response to chemotherapy and the phenomenon of the drug resistance. Therefore, new chemotherapeutic solutions are needed. The aim of this study was to explore benefit of combined cisplatin (CDDP) and valproic acid (VPA) therapy in patients' derived LSCC cell lines. Cell viability assay was used to establish cellular response to the drug by isobolography followed by RNA sequencing (RNAseq) analysis. Danio rerio were used for in vivo studies. Depending on the cell line, we found that the combinations of drugs resulted in synergistic or antagonistic pharmacological interaction, which was accompanied by significant changes in genes expression profiles. The presented therapeutic scheme efficiently blocked tumor growth in an in vivo model, corresponding to the in vitro performed studies. Interestingly the RK5 cell line, upon the combined treatment acquired a molecular profile typically associated with epithelial to mesenchymal transition (EMT). Hence, our studies demonstrates that patient-specific personalized therapy of larynx cancer should be considered and the combination of cisplatin and valproic acid should be explored as a potential therapeutic strategy in the treatment of larynx cancer.

15.
Cancers (Basel) ; 13(14)2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34298623

RESUMEN

Valproic acid (2-propylpentanoic acid, VPA) is a short-chain fatty acid, a member of the group of histone deacetylase inhibitors (HDIs). VPA has been successfully used in the treatment of epilepsy, bipolar disorders, and schizophrenia for over 50 years. Numerous in vitro and in vivo pre-clinical studies suggest that this well-known anticonvulsant drug significantly inhibits cancer cell proliferation by modulating multiple signaling pathways. Breast cancer (BC) is the most common malignancy affecting women worldwide. Despite significant progress in the treatment of BC, serious adverse effects, high toxicity to normal cells, and the occurrence of multi-drug resistance (MDR) still limit the effective therapy of BC patients. Thus, new agents which improve the effectiveness of currently used methods, decrease the emergence of MDR, and increase disease-free survival are highly needed. This review focuses on in vitro and in vivo experimental data on VPA, applied individually or in combination with other anti-cancer agents, in the treatment of different histological subtypes of BC.

16.
Int J Mol Sci ; 22(10)2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-34068438

RESUMEN

Histone deacetylase inhibitors (HDIs) are promising anti-cancer agents that inhibit proliferation of many types of cancer cells including breast carcinoma (BC) cells. In the present study, we investigated the influence of the Notch1 activity level on the pharmacological interaction between cisplatin (CDDP) and two HDIs, valproic acid (VPA) and suberoylanilide hydroxamic acid (SAHA, vorinostat), in luminal-like BC cells. The type of drug-drug interaction between CDDP and HDIs was determined by isobolographic analysis. MCF7 cells were genetically modified to express differential levels of Notch1 activity. The cytotoxic effect of SAHA or VPA was higher on cells with decreased Notch1 activity and lower for cells with increased Notch1 activity than native BC cells. The isobolographic analysis demonstrated that combinations of CDDP with SAHA or VPA at a fixed ratio of 1:1 exerted additive or additive with tendency toward synergism interactions. Therefore, treatment of CDDP with HDIs could be used to optimize a combined therapy based on CDDP against Notch1-altered luminal BC. In conclusion, the combined therapy of HDIs and CDDP may be a promising therapeutic tool in the treatment of luminal-type BC with altered Notch1 activity.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Cisplatino/farmacología , Interacciones Farmacológicas , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Receptor Notch1/metabolismo , Antineoplásicos/farmacología , Apoptosis , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular , Sinergismo Farmacológico , Quimioterapia Combinada , Femenino , Humanos , Células MCF-7 , Receptor Notch1/genética
17.
Biomolecules ; 10(11)2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33182753

RESUMEN

Magnoflorine (MGN) is a quaternary aporphine alkaloid that exhibits numerous therapeutic properties, including neuropsychopharmacological, anti-anxiety, immunomodulatory, anti-inflammatory, antioxidant, or antifungal activities. The aim of the present study was an investigation of the influence of MGN on viability, proliferation, induction of apoptosis, and cell cycle arrest in NCI-H1299 lung, MDA-MB-468 breast, T98G glioma, and TE671 rhabdomyosarcoma cancer cells. MGN was isolated from the roots of Berberis cretica L. by counter-current partition chromatography (CPC). Cell viability and proliferation assessments were performed by means of MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and 5-bromo-2'-deoxyuridine (BrDU) assays, respectively. The induction of apoptosis and cell cycle progression was measured using fluorescence-activated cell sorting analysis. MGN in high doses inhibits proliferation, induces apoptosis, and inhibits cell cycle in S/G2 phases in a dose-dependent manner. MGN seems to be a promising anti-cancer compound in therapy of some types of lung, breast, glioma, and rhabdomyosarcoma cancers, for which current standard therapies are limited or have severe strong side effects.


Asunto(s)
Antineoplásicos/farmacología , Aporfinas/farmacología , Berberis/química , Neoplasias de la Mama/tratamiento farmacológico , Glioma/tratamiento farmacológico , Extractos Vegetales/farmacología , Rabdomiosarcoma/tratamiento farmacológico , Antineoplásicos/aislamiento & purificación , Apoptosis/efectos de los fármacos , Aporfinas/aislamiento & purificación , Neoplasias de la Mama/fisiopatología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Femenino , Glioma/fisiopatología , Humanos , Extractos Vegetales/aislamiento & purificación , Rabdomiosarcoma/fisiopatología
18.
Int J Med Sci ; 17(18): 2987-2997, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33173419

RESUMEN

Introduction: mTOR inhibitors are anticancer agents affecting mTOR/AKT/PI3K pathway that is one of the most important in human cancer cells. Hyperactivation of mTOR/AKT/PI3K and overexpression of this pathway members are frequently reported in uterine sarcoma and carcinosarcoma. Present study is aimed to assess the activity of the two mTOR inhibitors (rapamycin - RAP and sapanisertib - MLN) as a single agent and combined with gemcitabine (GEM, one of substances commonly used in systemic anticancer treatment) in uterine sarcoma and carcinosarcoma in vitro models. Material and methods: SK-UT-1 and SK-UT1-B (uterine carcinosarcoma), MES-SA (leiomyosarcoma) and ESS-1 (endometrial stromal sarcoma) cell lines were used. An MTT assay was performed to examine the cytotoxicity of RAP, MLN and mixtures: RAP+MLN, RAP+GEM, MLN+GEM against these cells. The interactions between tested compounds were assessed in isobolographic analysis. Results and conclusions: Carcinosarcoma cell lines (both SK-UT-1 and SK-UT-1B) do not respond to RAP and respond relatively weakly to MLN treatment. Additive and supraadditive effects were noted for combined treatment with GEM and MLN. Endometrial stromal sarcoma cell line (ESS-1) occured to be sensitive to both RAP and MLN, but the response was stronger for MLN. Additive effect of all tested drug combinations was observed for ESS-1. Leiomyosarcoma cell line (MES-SA) was found sensitive to both mTOR inhibitors. Additive effects in combinations of GEM, RAP and MLN were observed, what makes them promising for future preclinical and clinical trials. Additivity with slight tendency towards antagonism between GEM and MLN observed in MES-SA cell line is unexpected finding and might prompt the mechanistic research aimed to explain this phenomenon.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Carcinosarcoma/tratamiento farmacológico , Neoplasias Endometriales/tratamiento farmacológico , Leiomiosarcoma/tratamiento farmacológico , Sarcoma Estromático Endometrial/tratamiento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinosarcoma/patología , Línea Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Sinergismo Farmacológico , Neoplasias Endometriales/patología , Femenino , Humanos , Leiomiosarcoma/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Pirazoles/farmacología , Pirazoles/uso terapéutico , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Sarcoma Estromático Endometrial/patología , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Sirolimus/uso terapéutico , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo , Gemcitabina
19.
Int J Oncol ; 57(4): 1013-1026, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32700755

RESUMEN

Cancer cells have developed numerous strategies to maintain their proliferative capacity and to withstand different kinds of stress. The mitochondrial stress­70 protein named glucose regulated protein 75 (GRP75), also known as mortalin, is an intriguing cancer pro­survival factor. It is constitutively expressed in normal tissues but is upregulated in many tumors, and was shown to be a cancer prognostic biomarker. Mortalin is an inhibitor of complement­dependent cytotoxicity (CDC) and may therefore protect cells from antibody­based immunotherapy. To target mortalin for cancer therapy, our laboratory designed several mortalin mimetic peptides with sequences predicted to be involved in mortalin binding to its client proteins. The peptides were synthesized with a C­terminal transactivator of transcription sequence. By using cell death methodologies, the mechanism of action of the mortalin mimetic peptides on cancer cells was studied. Two peptides in particular, Mot­P2 and Mot­P7, were found to be highly toxic to lymphoma and ovarian, breast and prostate carcinoma cells. The analysis of their mode of action revealed that they may induce, within minutes, plasma membrane perturbations and mitochondrial stress. Furthermore, Mot­P2 and Mot­P7 activated necrotic cell death, leading to plasma membrane perforation, mitochondrial inner membrane depolarization and decrease in ATP level. In addition, Mot­P7, but not Mot­P2, required extracellular calcium ions to fully mediate cell death and was partially inhibited by plasma membrane cholesterol. At sub­toxic concentrations, the two peptides moderately inhibited cancer cell proliferation and blocked cell cycle at G2/M. Both peptides may bind intracellularly to mortalin and/or a mortalin­binding protein, hence knocking down mortalin expression reduced cell death. Combining treatment with Mot­P2 or Mot­P7 and CDC resulted in increased cell death. This study identified highly cytotoxic mortalin mimetic peptides that may be used as monotherapy or combined with complement­activating antibody therapy to target mortalin for precision cancer therapy.


Asunto(s)
Proteínas del Sistema Complemento/inmunología , Proteínas HSP70 de Choque Térmico/farmacología , Proteínas Mitocondriales/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Péptidos/farmacología , Peptidomiméticos/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/inmunología , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/inmunología , Neoplasias/metabolismo , Neoplasias/patología , Péptidos/química , Unión Proteica
20.
J Transl Med ; 18(1): 220, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32487171

RESUMEN

BACKGROUND: Previous studies have shown clinical relevance of programmed death-ligand 1 (PD-L1) and soluble PD-L1 (sPD-L1) in human cancers. However, still contradictory results exist. Our aim was evaluation of PD-L1-expressing monocytic myeloid-derived suppressor cells (M-MDSCs), monocytes/macrophages (MO/MA), tumour cells (TC) and immune/inflammatory cells (IC) as well as investigation of the sPD-L1 in ovarian cancer (OC) patients. METHODS: The group of 74 pretreatment women were enrollment to the study. The expression of PD-L1 on M-MDSCS and MO/MA was assessed by flow cytometry. The profile of sPD-L1 was examined with ELISA. The expression of PD-L1 in mononuclear cells (MCs) was analyzed using real time PCR. PD-L1 immunohistochemical analysis was prepared on TC and IC. An in silico validation of prognostic significance of PD-L1 mRNA expression was performed based microarray datasets. RESULTS: OC patients had significantly higher frequency of MO/MA versus M-MDSC in the blood, ascites and tumour (each p < 0.0001). In contrast, PD-L1 expression was higher on M-MDSCs versus MO/MA in the blood and ascites (each p < 0.0001), but not in the tumour (p > 0.05). Significantly higher accumulation of blood-circulating M-MDSC, MO/MA, PD-L1+M-MDSC, PD-L1+MO/MA and sPD-L1 was observed in patients versus control (p < 0.001, p < 0.05, p < 0.001, p < 0.001 and p < 0.0001, respectively). Accumulation of these factors was clinicopathologic-independent (p > 0.05). The expression of PD-L1 was significantly higher on IC versus TC (p < 0.0001) and was clinicopathologic-independent (p > 0.05) except higher level of PD-L1+TC in the endometrioid versus mucinous tumours. Interestingly, blood-circulating sPD-L1 positively correlated with PD-L1+M-MDSCs (p = 0.03) and PD-L1+MO/MA (p = 0.02) in the blood but not with these cells in the ascites and tumours nor with PD-L1+TC/IC (each p > 0.05). PD-L1 and sPD-L1 were not predictors of overall survival (OS; each p > 0.05). Further validation revealed no association between PD-L1 mRNA expression and OS in large independent OC patient cohort (n = 655, p > 0.05). CONCLUSIONS: Although PD-L1 may not be a prognostic factor for OC, our study demonstrated impaired immunity manifested by up-regulation of PD-L1/sPD-L1. Furthermore, there was a positive association between PD-L1+ myeloid cells and sPD-L1 in the blood, suggesting that sPD-L1 may be a noninvasive surrogate marker for PD-L1+myeloid cells immunomonitoring in OC. Overall, these data should be under consideration during future clinical studies/trials.


Asunto(s)
Antígeno B7-H1 , Células Supresoras de Origen Mieloide , Neoplasias Ováricas , Femenino , Humanos , Macrófagos , Monocitos , Neoplasias Ováricas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...