Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Alzheimers Dement (Amst) ; 13(1): e12240, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34604499

RESUMEN

INTRODUCTION: This study aims to first discover plasma proteomic biomarkers relating to neurodegeneration (N) and vascular (V) damage in cognitively normal individuals and second to discover proteins mediating sex-related difference in N and V pathology. METHODS: Five thousand and thirty-two plasma proteins were measured in 1061 cognitively normal individuals (628 females and 433 males), nearly 90% of whom had magnetic resonance imaging measures of hippocampal volume (as N) and white matter hyperintensities (as V). RESULTS: Differential protein expression analysis and co-expression network analysis revealed different proteins and modules associated with N and V, respectively. Furthermore, causal mediation analysis revealed four proteins mediated sex-related difference in N and one protein mediated such difference in V damage. DISCUSSION: Once validated, the identified proteins could help to select cognitively normal individuals with N and V pathology for Alzheimer's disease clinical trials and provide targets for further mechanistic studies on brain sex differences, leading to sex-specific therapeutic strategies.

2.
Brain ; 144(12): 3769-3778, 2021 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-34581779

RESUMEN

Development of cerebral small vessel disease, a major cause of stroke and dementia, may be influenced by early life factors. It is unclear whether these relationships are independent of each other, of adult socio-economic status or of vascular risk factor exposures. We examined associations between factors from birth (ponderal index, birth weight), childhood (IQ, education, socio-economic status), adult small vessel disease, and brain volumes, using data from four prospective cohort studies: STratifying Resilience And Depression Longitudinally (STRADL) (n = 1080; mean age = 59 years); the Dutch Famine Birth Cohort (n = 118; mean age = 68 years); the Lothian Birth Cohort 1936 (LBC1936; n = 617; mean age = 73 years), and the Simpson's cohort (n = 110; mean age = 78 years). We analysed each small vessel disease feature individually and summed to give a total small vessel disease score (range 1-4) in each cohort separately, then in meta-analysis, adjusted for vascular risk factors and adult socio-economic status. Higher birth weight was associated with fewer lacunes [odds ratio (OR) per 100 g = 0.93, 95% confidence interval (CI) = 0.88 to 0.99], fewer infarcts (OR = 0.94, 95% CI = 0.89 to 0.99), and fewer perivascular spaces (OR = 0.95, 95% CI = 0.91 to 0.99). Higher childhood IQ was associated with lower white matter hyperintensity burden (OR per IQ point = 0.99, 95% CI 0.98 to 0.998), fewer infarcts (OR = 0.98, 95% CI = 0.97 to 0.998), fewer lacunes (OR = 0.98, 95% CI = 0.97 to 0.999), and lower total small vessel disease burden (OR = 0.98, 95% CI = 0.96 to 0.999). Low education was associated with more microbleeds (OR = 1.90, 95% CI = 1.33 to 2.72) and lower total brain volume (mean difference = -178.86 cm3, 95% CI = -325.07 to -32.66). Low childhood socio-economic status was associated with fewer lacunes (OR = 0.62, 95% CI = 0.40 to 0.95). Early life factors are associated with worse small vessel disease in later life, independent of each other, vascular risk factors and adult socio-economic status. Risk for small vessel disease may originate in early life and provide a mechanistic link between early life factors and risk of stroke and dementia. Policies investing in early child development may improve lifelong brain health and contribute to the prevention of dementia and stroke in older age.


Asunto(s)
Peso al Nacer , Enfermedades de los Pequeños Vasos Cerebrales , Escolaridad , Inteligencia , Factores Socioeconómicos , Anciano , Enfermedades de los Pequeños Vasos Cerebrales/etiología , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Factores de Riesgo
3.
Maturitas ; 133: 49-53, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32005423

RESUMEN

OBJECTIVES: Cardiovascular risk is associated with cognitive decline and this effect is attributed to brain pathology, including white matter hyperintensity (WMH) burden. Low-dose aspirin is frequently recommended for reducing vascular events. We investigated the effect of taking aspirin on the association between cardiovascular risk, WMH burden and cognitive function. STUDY DESIGN: The study sample was drawn from 318 dementia-free adults aged 67-71 years. Brain magnetic resonance imaging (MRI) scans were acquired from 239 participants. MAIN OUTCOME MEASURES: WMH total lesion volumes (TLV) were extracted using the automated lesion segmentation algorithm. We measured cardiovascular risk by calculating ASSIGN score. Cognitive ability was measured using a test of processing speed. We developed structural equation models to test our hypothesis. RESULTS: Sixty-eight participants (47.1 % male, mean age = 68.8 years) reported that they took aspirin. The demographic measures did not differ significantly by aspirin use. Among aspirin users, there was a strong negative association between WMH TLV and cognition (ß = -0.43, p-value < 0.001), while in non-users of aspirin the only significant predictor of poorer cognition was cardiovascular risk (ß = -0.17, p-value = 0.001). CONCLUSIONS: Aspirin use moderates the negative effect of WMH burden on cognition. Considering WMH burden in addition to cardiovascular risk could improve the prediction of cognitive decline in older adults with aspirin use.


Asunto(s)
Aspirina/uso terapéutico , Enfermedades Cardiovasculares , Cognición , Sustancia Blanca/patología , Anciano , Envejecimiento/patología , Envejecimiento/psicología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Factores de Riesgo , Sustancia Blanca/diagnóstico por imagen
4.
J Int Med Res ; 48(2): 300060519880053, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31612759

RESUMEN

OBJECTIVES: White matter hyperintensities (WMH) are a common imaging finding indicative of cerebral small vessel disease. Lesion segmentation algorithms have been developed to overcome issues arising from visual rating scales. In this study, we evaluated two automated methods and compared them to visual and manual segmentation to determine the most robust algorithm provided by the open-source Lesion Segmentation Toolbox (LST). METHODS: We compared WMH data from visual ratings (Scheltens' scale) with those derived from algorithms provided within LST. We then compared spatial and volumetric WMH data derived from manually-delineated lesion maps with WMH data and lesion maps provided by the LST algorithms. RESULTS: We identified optimal initial thresholds for algorithms provided by LST compared with visual ratings (Lesion Growth Algorithm (LGA): initial κ and lesion probability thresholds, 0.5; Lesion Probability Algorithm (LPA) lesion probability threshold, 0.65). LGA was found to perform better then LPA compared with manual segmentation. CONCLUSION: LGA appeared to be the most suitable algorithm for quantifying WMH in relation to cerebral small vessel disease, compared with Scheltens' score and manual segmentation. LGA offers a user-friendly, effective WMH segmentation method in the research environment.


Asunto(s)
Leucoaraiosis , Sustancia Blanca , Algoritmos , Encéfalo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Sustancia Blanca/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...