Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros










Intervalo de año de publicación
1.
Sci Rep ; 13(1): 22320, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-38102400

RESUMEN

Predicting insect responses to climate change is essential for preserving ecosystem services and biodiversity. Due to high daytime temperatures and low humidity levels, nocturnal insects are expected to have lower heat and desiccation tolerance compared to diurnal species. We estimated the lower (CTMin) and upper (CTMax) thermal limits of Megalopta, a group of neotropical, forest-dwelling bees. We calculated warming tolerance (WT) as a metric to assess vulnerability to global warming and measured survival rates during simulated heatwaves and desiccation stress events. We also assessed the impact of body size and reproductive status (ovary area) on bees' thermal limits. Megalopta displayed lower CTMin, CTMax, and WTs than diurnal bees (stingless bees, orchid bees, and carpenter bees), but exhibited similar mortality during simulated heatwave and higher desiccation tolerance. CTMin increased with increasing body size across all bees but decreased with increasing body size and ovary area in Megalopta, suggesting a reproductive cost or differences in thermal environments. CTMax did not increase with increasing body size or ovary area. These results indicate a greater sensitivity of Megalopta to temperature than humidity and reinforce the idea that nocturnal insects are thermally constrained, which might threaten pollination services in nocturnal contexts during global warming.


Asunto(s)
Cambio Climático , Termotolerancia , Femenino , Animales , Abejas , Ecosistema , Polinización , Desecación , Insectos
2.
Foods ; 12(19)2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37835310

RESUMEN

The parameters for assessing the quality of honey produced by Apis mellifera are standardized worldwide. The physicochemical properties of honey might vary extensively due to factors such as the geographical area where it was produced and the season in which it was harvested. Little information is available on variations in honey quality among different harvest periods in tropical areas, and particularly in neotropical dry forests. This study describes variations in seventeen physicochemical parameters and the pollen diversity of honey harvested from beehives during the dry season in February, March, and April 2021, in the dry arc of Panama. Potassium is the most abundant mineral in honey samples, and its concentration increases during the harvest period from February to April. A PCA analysis showed significant differences among the samples collected during different harvest periods. The pollen diversity also differs among honey samples from February compared with March and April. The results indicate that climatic conditions may play an important role in the quality of honey produced in the dry arc of Panama. Furthermore, these results might be useful for establishing quality-control parameters of bee honey produced in Panama in support of beekeeping activities in seasonal wet-dry areas of the tropics.

3.
Microbiome ; 11(1): 150, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37452376

RESUMEN

BACKGROUND: Individuals that band together create new ecological opportunities for microorganisms. In vertical transmission, theory predicts a conserved microbiota within lineages, especially social bees. Bees exhibit solitary to social behavior among and/or within species, while life cycles can be annual or perennial. Bee nests may be used over generations or only once, and foraging ecology varies widely. To assess which traits are associated with bee microbiomes, we analyzed microbial diversity within solitary and social bees of Apidae, Colletidae, and Halictidae, three bee families in Panama's tropical forests. Our analysis considered the microbiome of adult gut contents replicated through time, localities, and seasons (wet and dry) and included bee morphology and comparison to abdominal (dissected) microbiota. Diversity and distribution of tropical bee microbes (TBM) within the corbiculate bee clade were emphasized. RESULTS: We found the eusocial corbiculate bees tended to possess a more conserved gut microbiome, attributable to vertical transmission, but microbial composition varied among closely related species. Euglossine bees (or orchid bees), corbiculates with mainly solitary behavior, had more variable gut microbiomes. Their shorter-tongued and highly seasonal species displayed greater diversity, attributable to flower-visiting habits. Surprisingly, many stingless bees, the oldest corbiculate clade, lacked bacterial genera thought to predate eusociality, while several facultatively social, and solitary bee species possessed those bacterial taxa. Indeed, nearly all bee species displayed a range of affinities for single or multiple variants of the "socially associated" bacterial taxa, which unexpectedly demonstrated high sequence variation. CONCLUSIONS: Taken together, these results call into question whether specific bacterial associates facilitate eusocial behavior, or are subsequently adopted, or indicate frequent horizontal transmission between perennial eusocial colonies and other social, facultatively social, and solitary bees. Video Abstract.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Abejas , Animales , Microbiota/genética , Conducta Social , Microbioma Gastrointestinal/genética , Bosques
4.
Front Microbiol ; 14: 1114849, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37089560

RESUMEN

Pathogens and parasites of solitary bees have been studied for decades, but the microbiome as a whole is poorly understood for most taxa. Comparative analyses of microbiome features such as composition, abundance, and specificity, can shed light on bee ecology and the evolution of host-microbe interactions. Here we study microbiomes of ground-nesting cellophane bees (Colletidae: Diphaglossinae). From a microbial point of view, the diphaglossine genus Ptiloglossa is particularly remarkable: their larval provisions are liquid and smell consistently of fermentation. We sampled larval provisions and various life stages from wild nests of Ptiloglossa arizonensis and two species of closely related genera: Caupolicana yarrowi and Crawfordapis luctuosa. We also sampled nectar collected by P. arizonensis. Using 16S rRNA gene sequencing, we find that larval provisions of all three bee species are near-monocultures of lactobacilli. Nectar communities are more diverse, suggesting ecological filtering. Shotgun metagenomic and phylogenetic data indicate that Ptiloglossa culture multiple species and strains of Apilactobacillus, which circulate among bees and flowers. Larval lactobacilli disappear before pupation, and hence are likely not vertically transmitted, but rather reacquired from flowers as adults. Thus, brood cell microbiomes are qualitatively similar between diphaglossine bees and other solitary bees: lactobacilli-dominated, environmentally acquired, and non-species-specific. However, shotgun metagenomes provide evidence of a shift in bacterial abundance. As compared with several other bee species, Ptiloglossa have much higher ratios of bacterial to plant biomass in larval provisions, matching the unusually fermentative smell of their brood cells. Overall, Ptiloglossa illustrate a path by which hosts can evolve quantitatively novel symbioses: not by acquiring or domesticating novel symbionts, but by altering the microenvironment to favor growth of already widespread and generalist microbes.

5.
Artículo en Inglés | MEDLINE | ID: mdl-37017717

RESUMEN

Spatial orientation is a prerequisite for most behaviors. In insects, the underlying neural computations take place in the central complex (CX), the brain's navigational center. In this region different streams of sensory information converge to enable context-dependent navigational decisions. Accordingly, a variety of CX input neurons deliver information about different navigation-relevant cues. In bees, direction encoding polarized light signals converge with translational optic flow signals that are suited to encode the flight speed of the animals. The continuous integration of speed and directions in the CX can be used to generate a vector memory of the bee's current position in space in relation to its nest, i.e., perform path integration. This process depends on specific, complex features of the optic flow encoding CX input neurons, but it is unknown how this information is derived from the visual periphery. Here, we thus aimed at gaining insight into how simple motion signals are reshaped upstream of the speed encoding CX input neurons to generate their complex features. Using electrophysiology and anatomical analyses of the halictic bees Megalopta genalis and Megalopta centralis, we identified a wide range of motion-sensitive neurons connecting the optic lobes with the central brain. While most neurons formed pathways with characteristics incompatible with CX speed neurons, we showed that one group of lobula projection neurons possess some physiological and anatomical features required to generate the visual responses of CX optic-flow encoding neurons. However, as these neurons cannot explain all features of CX speed cells, local interneurons of the central brain or alternative input cells from the optic lobe are additionally required to construct inputs with sufficient complexity to deliver speed signals suited for path integration in bees.


Asunto(s)
Encéfalo , Percepción Espacial , Abejas , Animales , Encéfalo/fisiología , Percepción Espacial/fisiología , Neuronas/fisiología , Insectos , Orientación Espacial , Vías Visuales/fisiología
6.
Nat Ecol Evol ; 7(4): 557-569, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36941345

RESUMEN

Sweat bees have repeatedly gained and lost eusociality, a transition from individual to group reproduction. Here we generate chromosome-length genome assemblies for 17 species and identify genomic signatures of evolutionary trade-offs associated with transitions between social and solitary living. Both young genes and regulatory regions show enrichment for these molecular patterns. We also identify loci that show evidence of complementary signals of positive and relaxed selection linked specifically to the convergent gains and losses of eusociality in sweat bees. This includes two pleiotropic proteins that bind and transport juvenile hormone (JH)-a key regulator of insect development and reproduction. We find that one of these proteins is primarily expressed in subperineurial glial cells that form the insect blood-brain barrier and that brain levels of JH vary by sociality. Our findings are consistent with a role of JH in modulating social behaviour and suggest that eusocial evolution was facilitated by alteration of the proteins that bind and transport JH, revealing how an ancestral developmental hormone may have been co-opted during one of life's major transitions. More broadly, our results highlight how evolutionary trade-offs have structured the molecular basis of eusociality in these bees and demonstrate how both directional selection and release from constraint can shape trait evolution.


Asunto(s)
Conducta Social , Sudor , Abejas , Animales , Reproducción , Fenotipo
7.
Artículo en Inglés | MEDLINE | ID: mdl-34948592

RESUMEN

Early in the SARS-CoV-2 pandemic, many national public health authorities implemented non-pharmaceutical interventions to mitigate disease outbreaks. Panamá established mandatory mask use two months after its first documented case. Initial compliance was high, but diverse masks were used in public areas. We studied behavioral dynamics of mask use through the first two COVID-19 waves in Panama, to improve the implementation of effective, low-cost public health containment measures when populations are exposed to novel air-borne pathogens. Mask use behavior was recorded from pedestrians in four Panamanian populations (August to December 2020). We recorded facial coverings and if used, the type of mask, and gender and estimated age of the wearer. Our results showed that people were highly compliant (>95%) with mask mandates and demonstrated important population-level behaviors: (1) decreasing use of cloth masks over time, and increasing use of surgical masks; (2) mask use was 3-fold lower in suburban neighborhoods than other public areas and (3) young people were least likely to wear masks. Results help focus on highly effective, low-cost, public health interventions for managing and controlling a pandemic. Considerations of behavioral preferences for different masks, relative to pricing and availability, are essential for optimizing public health policies. Policies to increase the availability of effective masks, and behavioral nudges to increase acceptance, and to facilitate mask usage, during the ongoing SARS-CoV-2 pandemic, and for future pandemics of respiratory pathogens, are key tools, especially for nations lagging in access to expensive vaccines and pharmacological approaches.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adolescente , Humanos , Máscaras , Pandemias , Salud Pública
8.
J Fungi (Basel) ; 7(12)2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34946990

RESUMEN

Fungi in the genus Escovopsis (Ascomycota: Hypocreales) are prevalent associates of the complex symbiosis between fungus-growing ants (Tribe Attini), the ants' cultivated basidiomycete fungi and a consortium of both beneficial and harmful microbes found within the ants' garden communities. Some Escovopsis spp. have been shown to attack the ants' cultivated fungi, and co-infections by multiple Escovopsis spp. are common in gardens in nature. Yet, little is known about how Escovopsis strains impact each other. Since microbe-microbe interactions play a central role in microbial ecology and evolution, we conducted experiments to assay the types of interactions that govern Escovopsis-Escovopsis relationships. We isolated Escovopsis strains from the gardens of 10 attine ant genera representing basal (lower) and derived groups in the attine ant phylogeny. We conducted in vitro experiments to determine the outcome of both intraclonal and interclonal Escovopsis confrontations. When paired with self (intraclonal interactions), Escovopsis isolated from lower attine colonies exhibited antagonistic (inhibitory) responses, while strains isolated from derived attine colonies exhibited neutral or mutualistic interactions, leading to a clear phylogenetic pattern of interaction outcome. Interclonal interactions were more varied, exhibiting less phylogenetic signal. These results can serve as the basis for future studies on the costs and benefits of Escovopsis coinfection, and on the genetic and chemical mechanisms that regulate the compatibility and incompatibility observed here.

9.
Sci Rep ; 11(1): 17039, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34426595

RESUMEN

A well-documented phenomenon among social insects is that brain changes occur prior to or at the onset of certain experiences, potentially serving to prime the brain for specific tasks. This insight comes almost exclusively from studies considering developmental maturation in females. As a result, it is unclear whether age-related brain plasticity is consistent across sexes, and to what extent developmental patterns differ. Using confocal microscopy and volumetric analyses, we investigated age-related brain changes coinciding with sexual maturation in the males of the facultatively eusocial sweat bee, Megalopta genalis, and the obligately eusocial bumble bee, Bombus impatiens. We compared volumetric measurements between newly eclosed and reproductively mature males kept isolated in the lab. We found expansion of the mushroom bodies-brain regions associated with learning and memory-with maturation, which were consistent across both species. This age-related plasticity may, therefore, play a functionally-relevant role in preparing male bees for mating, and suggests that developmentally-driven neural restructuring can occur in males, even in species where it is absent in females.


Asunto(s)
Envejecimiento/fisiología , Abejas/fisiología , Cuerpos Pedunculados/fisiología , Sudor/fisiología , Animales , Femenino , Masculino
10.
PLoS Biol ; 19(8): e3001322, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34411089

RESUMEN

Marine multicellular organisms host a diverse collection of bacteria, archaea, microbial eukaryotes, and viruses that form their microbiome. Such host-associated microbes can significantly influence the host's physiological capacities; however, the identity and functional role(s) of key members of the microbiome ("core microbiome") in most marine hosts coexisting in natural settings remain obscure. Also unclear is how dynamic interactions between hosts and the immense standing pool of microbial genetic variation will affect marine ecosystems' capacity to adjust to environmental changes. Here, we argue that significantly advancing our understanding of how host-associated microbes shape marine hosts' plastic and adaptive responses to environmental change requires (i) recognizing that individual host-microbe systems do not exist in an ecological or evolutionary vacuum and (ii) expanding the field toward long-term, multidisciplinary research on entire communities of hosts and microbes. Natural experiments, such as time-calibrated geological events associated with well-characterized environmental gradients, provide unique ecological and evolutionary contexts to address this challenge. We focus here particularly on mutualistic interactions between hosts and microbes, but note that many of the same lessons and approaches would apply to other types of interactions.


Asunto(s)
Aclimatación , Organismos Acuáticos/microbiología , Evolución Biológica , Ecología , Microbiota , Animales , Ecosistema , Humanos , Simbiosis
11.
Curr Biol ; 31(16): 3601-3605.e3, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34115977

RESUMEN

Bees, ants, and wasps are well known to visually navigate when traveling between their nests and foraging sites. When leaving their nest, landmarks in the vicinity are memorized and used upon return to locate the nest entrance.1,2 The Neotropical nocturnal sweat bee Megalopta genalis navigates under the forest canopy at light intensities ten times dimmer than starlight.3 Despite these dim conditions, Megalopta is able to memorize visual landmarks around the nest entrance in the frontal visual field.4 Even though frontal landmarks can clearly be discerned by Megalopta, the visual feature of greatest contrast in the rainforest at night is actually the dark dorsal silhouette of the distant canopy against the brighter night sky. Several species of ants,5-10 as well as a subsocial shield bug,11 use bright open gaps in the canopy as dorsal landmarks to navigate home while walking. Here we show that Megalopta is also able to distinguish dorsal landmarks during homing, the first flying insect known with this capacity. Megalopta is able to discriminate between differently oriented dorsal black striped patterns, or an "artificial canopy" of black circles, and to use this information to locate its nest entrance. These results suggest that the local foliage patterns created by the canopy against the brighter sky could potentially provide the bee with reliable landmark information for navigation during foraging and homing at night. VIDEO ABSTRACT.


Asunto(s)
Abejas , Fenómenos de Retorno al Lugar Habitual , Animales , Abejas/fisiología , Luz , Bosque Lluvioso , Campos Visuales
12.
Ecol Evol ; 11(11): 6041-6052, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34141201

RESUMEN

Antagonistic interactions between host and parasites are often embedded in networks of interacting species, in which hosts may be attacked by competing parasites species, and parasites may infect more than one host species. To better understand the evolution of host defenses and parasite counterdefenses in the context of a multihost, multiparasite system, we studied two sympatric species, of congeneric fungus-growing ants (Attini) species and their symbiotic fungal cultivars, which are attacked by multiple morphotypes of parasitic fungi in the genus, Escovopsis. To assess whether closely related ant species and their cultured fungi are evolving defenses against the same or different parasitic strains, we characterized Escovopsis that were isolated from colonies of sympatric Apterostigma dentigerum and A. pilosum. We assessed in vitro and in vivo interactions of these parasites with their hosts. While the ant cultivars are parasitized by similar Escovopsis spp., the frequency of infection by these pathogens differs between the two ant species. The ability of the host fungi to suppress Escovopsis growth, as well as ant defensive responses toward the parasites, differs depending on the parasite strain and on the host ant species.

13.
J Chem Ecol ; 47(4-5): 420-432, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33682070

RESUMEN

Queen pheromones evolved independently in multiple eusocial insect lineages, in which they mediate reproductive conflict by inhibiting worker ovarian development. Although fundamentally important for reproductive division of labor - the hallmark of eusociality - their evolutionary origins are enigmatic. Here, we analyze cuticular and Dufour's gland chemistries across alternative social and reproductive phenotypes in Megalopta genalis bees (tribe Augochlorini, family Halictidae) that facultatively express simple eusociality. Reproductive bees have distinct overall glandular and cuticular chemical phenotypes compared with non-reproductive workers. On the cuticle, a likely site of signal transmission, reproductives are enriched for certain alkenes, most linear alkanes, and are heavily enriched for all methyl-branched alkanes. Chemicals belonging to these compound classes are known to function as fertility signals in other eusocial insect taxa. Some macrocyclic lactones, compounds that serve as queen pheromones in the other eusocial halictid tribe (Halictini), are also enriched among reproductives relative to workers. The intra-population facultative eusociality of M. genalis permits direct comparisons between individuals expressing alternative reproductive phenotypes - females that reproduce alone (solitary reproductives) and social queens - to highlight traits in the latter that may be important mediators of eusociality. Compared with solitary reproductives, the cuticular chemistries of queens are more strongly differentiated from those of workers, and furthermore are especially enriched for methyl-branched alkanes. Determining the pheromonal function(s) and information content of the candidate signaling compounds we identify will help illuminate the early evolutionary history of queen pheromones, chemical signals central to the organization of insect eusocial behavior.


Asunto(s)
Mezclas Complejas/química , Feromonas/química , Feromonas/metabolismo , Alcanos/química , Alcanos/metabolismo , Alquenos/química , Alquenos/metabolismo , Comunicación Animal , Animales , Abejas , Conducta Animal , Evolución Biológica , Femenino , Fertilidad , Cromatografía de Gases y Espectrometría de Masas , Masculino , Reproducción
14.
Nat Ecol Evol ; 5(1): 122-134, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33106603

RESUMEN

During crop domestication, human farmers traded greater productivity for higher crop vulnerability outside specialized cultivation conditions. We found a similar domestication trade-off across the major co-evolutionary transitions in the farming systems of attine ants. First, the fundamental nutritional niches of cultivars narrowed over ~60 million years of naturally selected domestication, and laboratory experiments showed that ant farmers representing subsequent domestication stages strictly regulate protein harvest relative to cultivar fundamental nutritional niches. Second, ants with different farming systems differed in their abilities to harvest the resources that best matched the nutritional needs of their fungal cultivars. This was assessed by quantifying realized nutritional niches from analyses of items collected from the mandibles of laden ant foragers in the field. Third, extensive field collections suggest that among-colony genetic diversity of cultivars in small-scale farms may offer population-wide resilience benefits that species with large-scale farming colonies achieve by more elaborate and demanding practices to cultivate less diverse crops. Our results underscore that naturally selected farming systems have the potential to shed light on nutritional trade-offs that shaped the course of culturally evolved human farming.


Asunto(s)
Hormigas , Agricultura , Animales , Domesticación , Granjas , Hongos , Humanos , Filogenia , Simbiosis
15.
Ecol Evol ; 10(23): 12990-13010, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33304511

RESUMEN

Since all forms of mimicry are based on perceptual deception, the sensory ecology of the intended receiver is of paramount importance to test the necessary precondition for mimicry to occur, that is, model-mimic misidentification, and to gain insight in the origin and evolutionary trajectory of the signals. Here we test the potential for aggressive mimicry by a group of coral reef fishes, the color polymorphic Hypoplectrus hamlets, from the point of view of their most common prey, small epibenthic gobies and mysid shrimp. We build visual models based on the visual pigments and spatial resolution of the prey, the underwater light spectrum and color reflectances of putative models and their hamlet mimics. Our results are consistent with one mimic-model relationship between the butter hamlet H. unicolor and its model the butterflyfish Chaetodon capistratus but do not support a second proposed mimic-model pair between the black hamlet H. nigricans and the dusky damselfish Stegastes adustus. We discuss our results in the context of color morphs divergence in the Hypoplectrus species radiation and suggest that aggressive mimicry in H. unicolor might have originated in the context of protective (Batesian) mimicry by the hamlet from its fish predators rather than aggressive mimicry driven by its prey.

16.
Proc Natl Acad Sci U S A ; 117(24): 13615-13625, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32471944

RESUMEN

Developmental plasticity generates phenotypic variation, but how it contributes to evolutionary change is unclear. Phenotypes of individuals in caste-based (eusocial) societies are particularly sensitive to developmental processes, and the evolutionary origins of eusociality may be rooted in developmental plasticity of ancestral forms. We used an integrative genomics approach to evaluate the relationships among developmental plasticity, molecular evolution, and social behavior in a bee species (Megalopta genalis) that expresses flexible sociality, and thus provides a window into the factors that may have been important at the evolutionary origins of eusociality. We find that differences in social behavior are derived from genes that also regulate sex differentiation and metamorphosis. Positive selection on social traits is influenced by the function of these genes in development. We further identify evidence that social polyphenisms may become encoded in the genome via genetic changes in regulatory regions, specifically in transcription factor binding sites. Taken together, our results provide evidence that developmental plasticity provides the substrate for evolutionary novelty and shapes the selective landscape for molecular evolution in a major evolutionary innovation: Eusociality.


Asunto(s)
Abejas/crecimiento & desarrollo , Abejas/fisiología , Animales , Abejas/genética , Conducta Animal , Evolución Biológica , Evolución Molecular , Femenino , Genoma de los Insectos , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Masculino , Metamorfosis Biológica , Conducta Social
18.
PLoS Biol ; 17(11): e3000533, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31710600

RESUMEN

The significance of symbioses between eukaryotic hosts and microbes extends from the organismal to the ecosystem level and underpins the health of Earth's most threatened marine ecosystems. Despite rapid growth in research on host-associated microbes, from individual microbial symbionts to host-associated consortia of significantly relevant taxa, little is known about their interactions with the vast majority of marine host species. We outline research priorities to strengthen our current knowledge of host-microbiome interactions and how they shape marine ecosystems. We argue that such advances in research will help predict responses of species, communities, and ecosystems to stressors driven by human activity and inform future management strategies.


Asunto(s)
Organismos Acuáticos/microbiología , Microbiota/fisiología , Simbiosis/fisiología , Animales , Bacterias/clasificación , Ecosistema , Interacciones Microbiota-Huesped/fisiología , Humanos
19.
Insects ; 10(5)2019 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-31060310

RESUMEN

Parasites and their hosts use different strategies to overcome the defenses of the other, often resulting in an evolutionary arms race. Limited animal studies have explored the differential responses of hosts when challenged by differential parasite loads and different developmental stages of a parasite. The fungus-growing ant Trachymyrmex sp. 10 employs three different hygienic strategies to control fungal pathogens: Grooming the antibiotic-producing metapleural glands (MGs) and planting or weeding their mutualistic fungal crop. By inoculating Trachymyrmex colonies with different parasite concentrations (Metarhizium) or stages (germinated conidia or ungermianted conidia of Metarhizium and Escovopsis), we tested whether ants modulate and change hygienic strategies depending on the nature of the parasite challenge. There was no effect of the concentration of parasite on the frequencies of the defensive behaviors, indicating that the ants did not change defensive strategy according to the level of threat. However, when challenged with conidia of Escovopsis sp. and Metarhizium brunneum that were germinated or not-germinated, the ants adjusted their thygienic behavior to fungal planting and MG grooming behaviors using strategies depending on the conidia germination status. Our study suggests that fungus-growing ants can adjust the use of hygienic strategies based on the nature of the parasites.

20.
J Org Chem ; 84(12): 8019-8026, 2019 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-31136179

RESUMEN

A new strategy for the synthesis of 23-, 25-, 27-, and 29-membered ( Z)-selective unsaturated and saturated macrocyclic lactones from commercially available 16- and 17-membered macrocyclic lactones and bromoalcohols by Wittig reaction, Yamaguchi macrolactonization, and photoinduced decarboxylative radical macrolactonization is described. The position of the unsaturated part in the macrocyclic lactones can be controlled by changing the number of carbons in the starting materials. This protocol can provide facile access to the desired large-ring ( Z)-selective unsaturated and saturated macrocyclic lactones from simple starting materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...