Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
BMC Sports Sci Med Rehabil ; 16(1): 119, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802885

RESUMEN

BACKGROUND: Paired sets and alternative set configurations (e.g., cluster sets) are frequently employed by strength and conditioning practitioners; however, their synergistic impact remains underexplored in research. This study aimed to elucidate whether the set configuration used in a lower-body exercise affects mechanical performance during paired sets of upper-body exercises. METHODS: Twenty-one resistance-trained individuals (14 men and 7 women) randomly completed three experimental sessions that involved four sets of five repetitions at 75%1RM during both the bench press and bench pull exercises. The three experimental sessions varied solely in the activity conducted during the inter-set rest periods of each upper-body exercise: (i) Traditional squat - six squat repetitions without intra-set rest at 65%1RM; (ii) Rest redistribution squat - two clusters of three repetitions of the squat exercise at 65%1RM with 30 s of intra-set rest; and (iii) Passive rest - no exercise. RESULTS: The rest redistribution set configuration allowed the sets of the squat exercise to be performed at a faster velocity than the traditional set configuration (p = 0.037). However, none of the mechanical variables differed between the exercise protocols neither in the bench press (p ranged from 0.279 to 0.875) nor in the bench pull (p ranged from 0.166 to 0.478). CONCLUSIONS: Although rest redistribution is an effective strategy to alleviate fatigue during the sets in which it is implemented, it does not allow subjects to perform better in subsequent sets of the training session.

2.
J Sci Med Sport ; 27(3): 204-210, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38195366

RESUMEN

OBJECTIVES: (1) Determine the validity of instantaneous speed and acceleration and (2) the variation in validity over time (multiple sessions) for global navigation satellite systems (GNSS) devices. DESIGN: Repeated measures. METHODS: 10-Hz GNSS devices from Statsports (n = 2, Apex Pro) and Catapult (n = 2, Vector S7) were examined, whilst a speed laser manufactured by MuscleLab (n = 1, LaserSpeed) was the criterion measure, sampling at 2.56 kHz, with data exported at 1000 Hz. Ten participants completed 40 m sprinting and changes of pace on three separate days. Root mean square error (RMSE) was used to assess the magnitude and direction of the difference between GNSS and criterion measures (instantaneous speed, instantaneous acceleration). Linear mixed models were built to assess the difference in validity across days. RESULTS: RMSE ranged from 0.14 to 0.21 m·s-1 and 0.22 to 0.47 m·s-2 for speed and acceleration, respectively showing strong agreement. There were small variations in the agreement to criterion between days for both devices for speed (Catapult RMSE = 0.12 to 21 m·s-1; Statsports RMSE = 0.14 to 0.17 m·s-1) and for acceleration (Catapult RMSE = 0.26 to 0.47 m·s-2; Statsports RMSE = 0.22 to 0.43 m·s-2) across all movements. There was a negative linear relationship between speed and acceleration error as speed increased. CONCLUSIONS: Wearable microtechnology devices from Catapult (Vector S7) and Statsports (Apex Pro) have suitable validity when measuring instantaneous speed and acceleration across multiple days. There may be small variations during different sessions and over the speed spectrum.


Asunto(s)
Aceleración , Sistemas de Información Geográfica , Humanos , Reproducibilidad de los Resultados , Movimiento , Rayos Láser
3.
J Strength Cond Res ; 38(3): 465-473, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37973147

RESUMEN

ABSTRACT: Weakley, J, Johnston, RD, Cowley, N, Wood, T, Ramirez-Lopez, C, McMahon, E, and García-Ramos, A. The effects and reproducibility of 10, 20, and 30% velocity loss thresholds on acute and short-term fatigue and recovery responses. J Strength Cond Res 38(3): 465-473, 2024-This study aimed to establish the effects and reproducibility of implementing 10, 20, and 30% velocity loss thresholds (VLTs) during the free-weight barbell back squat on acute and short-term perceived soreness, neuromuscular fatigue, and physical performance. Using a repeated, counterbalanced, crossover design, 12 team-sport athletes completed on separate sessions 5 sets of the free-weight barbell back-squat until reaching VLTs of either 10, 20, or 30%. Outcomes were measured immediately postexercise and 24 hours after each session. To assess reproducibility, the same sessions were repeated after 4 weeks. Immediately postexercise, small differences in countermovement jump (CMJ) and 10-m sprint performance were observed between VLT conditions, whereas small to moderate differences in differential ratings of perceived exertion were reported (10% < 20% < 30%). At 24 hours, trivial differences in CMJ outcomes were found but small differences in 10-m sprint performance were detected between conditions (10% < 20% < 30%). In addition, at 24 hours, a single small difference in radial deformation using tensiomyography was found between 10 and 30% conditions, whereas large to very large differences in perceived soreness were reported between conditions (10% < 20% < 30%). Finally, the standard error of measurement of all outcome measures at 24 hours were of a similar magnitude to those reported in tightly controlled, short-term studies. Collectively, these findings demonstrate that VLTs help control the fatigue outcomes that occur as a response to resistance training and that they are reproducible. Therefore, for practitioners who wish to prescribe resistance training and be confident in the subsequent fatigue response, it is strongly advised that VLTs are implemented.


Asunto(s)
Entrenamiento de Fuerza , Humanos , Atletas , Fuerza Muscular/fisiología , Mialgia , Postura , Reproducibilidad de los Resultados , Estudios Cruzados
4.
Int J Sports Physiol Perform ; 19(1): 2-12, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37741636

RESUMEN

BACKGROUND: Maximal lower-body strength can be assessed both dynamically and isometrically; however, the relationship between the changes in these 2 forms of strength following resistance training is not well understood. PURPOSE: To systematically review and analyze the effects of resistance training on changes in maximal dynamic (1-repetition-maximum back squat, deadlift, and power clean) and position-matched isometric strength (isometric midthigh pull and the isometric squat). In addition, individual-level data were used to quantify the agreement and relationship between changes in dynamic and isometric strength. METHODS: Databases were systematically searched to identify eligible articles, and meta-analysis procedures were performed on the extracted data. The raw results from 4 studies were acquired, enabling bias and absolute reliability measures to be calculated using Bland-Altman test of agreement. RESULTS: Eleven studies met the inclusion criteria, which resulted in 29 isometric-dynamic change comparisons. The overall pooled effect was 0.13 in favor of dynamic testing; however, the prediction interval ranged from g = -0.49 to 0.75. There was no evidence of bias (P = .825) between isometric and dynamic tests; however, the reliability coefficient was estimated to be 16%, and the coefficient of variation (%) was 109.27. CONCLUSIONS: As a range of future effects can be expected when comparing isometric to dynamic strength changes following resistance training, and limited proportionality exists between changes in these 2 strength qualities, there is strong evidence that isometric and dynamic strength represent separate neuromuscular domains. These findings can be used to inform strength-assessment models in athlete populations.


Asunto(s)
Fuerza Muscular , Entrenamiento de Fuerza , Humanos , Contracción Isométrica , Reproducibilidad de los Resultados , Atletas
5.
Med Sci Sports Exerc ; 56(3): 564-574, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38051129

RESUMEN

PURPOSE: This study aimed to investigate the effect of an isometric (ISO) or Nordic hamstring exercise (NHE) intervention, alongside a sprint training program on hamstring strength, architecture, and sprinting performance in Australian footballers. METHODS: Twenty-five male athletes undertook NHE ( n = 13) or ISO ( n = 12) training across a 38-wk period (including preseason and in season). Biceps femoris long head (BFlh) architecture, ISO, and eccentric knee flexor strength were assessed at baseline, at the end of preseason (14 wk), and at the conclusion of the intervention. Sprint times and force-velocity profiles were determined at baseline and at the end of preseason. RESULTS: After the intervention, both groups had significant improvements in BFlh fascicle length (NHE: 1.16 cm, 95% CI = 0.68 to 1.63 cm, d = 1.88, P < 0.001; ISO: 0.82 cm, 95% CI = 0.57 to 1.06 cm, d = 1.70, P < 0.001), muscle thickness (NHE: 0.11 cm, 95% CI = 0.01 to 0.21 cm, d = 0.51, P = 0.032; ISO: 0.21 cm, 95% CI = 0.10 to 0.32 cm, d = 0.86, P = 0.002), and eccentric strength (NHE: 83 N, 95% CI = 53 to 114 N, d = 1.79, P < 0.001; ISO: 83 N, 95% CI = 17 to 151 N, d = 1.17, P = 0.018). Both groups also finished the intervention weaker isometrically than they started (NHE: -45 N, 95% CI = -81 to -8 N, d = -1.03, P = 0.022; ISO: -80 N, 95% CI = -104 to -56 N, d = -3.35, P < 0.001). At the end of preseason, the NHE group had improved their 5-m sprint time by 3.3% ± 2.0%), and their maximum horizontal velocity was 3% ± 2.1% greater than the ISO group who saw no changes. CONCLUSIONS: Both ISO and NHE training with a periodized sprinting program can increase BFlh fascicle length, thickness, and eccentric strength in Australian footballers. NHE training also improves 5-m sprint time and maximum velocity. However, both interventions reduced ISO strength. These findings provide unique, contextually relevant insights into the adaptations possible in semiprofessional athletes.


Asunto(s)
Músculos Isquiosurales , Fuerza Muscular , Humanos , Masculino , Estaciones del Año , Australia , Fuerza Muscular/fisiología , Ejercicio Físico , Músculos Isquiosurales/fisiología , Deportes de Equipo
6.
Sports Med ; 2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38041768

RESUMEN

BACKGROUND: Repeated-sprint training (RST) is a common training method for enhancing physical fitness in athletes. To advance RST prescription, it is important to understand the effects of programming variables on physical fitness and physiological adaptation. OBJECTIVES: This study (1) quantifies the pooled effects of running RST on changes in 10 and 20 m sprint time, maximal oxygen consumption (VO2max), Yo-Yo Intermittent Recovery Test Level 1 (YYIR1) distance, repeated-sprint ability (RSA), countermovement jump (CMJ) height and change of direction (COD) ability in athletes, and (2) examines the moderating effects of program duration, training frequency, weekly volume, sprint modality, repetition distance, number of repetitions per set and number of sets per session on changes in these outcome measures. METHODS: Pubmed, SPORTDiscus and Scopus databases were searched for original research articles up to 04 July 2023, investigating RST in healthy, able-bodied athletes, between 14 and 35 years of age, and a performance calibre of trained or above. RST interventions were limited to repeated, maximal running (land-based) sprints of ≤ 10 s duration, with ≤ 60 s recovery, performed for 2-12 weeks. A Downs and Black checklist was used to assess the methodological quality of the included studies. Eligible data were analysed using multi-level mixed-effects meta-analysis, with standardised mean changes determined for all outcomes. Standardised effects [Hedges G (G)] were evaluated based on coverage of their confidence (compatibility) intervals (CI) using a strength and conditioning specific reference value of G = 0.25 to declare an improvement (i.e. G > 0.25) or impairment (i.e. G < - 0.25) in outcome measures. Applying the same analysis, the effects of programming variables were then evaluated against a reference RST program, consisting of three sets of 6 × 30 m straight-line sprints performed twice per week for 6 weeks (1200 m weekly volume). RESULTS: 40 publications were included in our investigation, with data from 48 RST groups (541 athletes) and 19 active control groups (213 athletes). Across all studies, the effects of RST were compatible with improvements in VO2max (G 0.56, 90% CI 0.32-0.80), YYIR1 distance (G 0.61, 90% CI 0.43-0.79), RSA decrement (G - 0.61, 90% CI - 0.85 to - 0.37), linear sprint times (10 m: G - 0.35, 90% CI - 0.48 to - 0.22; 20 m: G - 0.48, 90% CI - 0.69 to - 0.27), RSA average time (G - 0.34, 90% CI - 0.49 to - 0.18), CMJ height (G 0.26, 90% CI 0.13-0.39) and COD ability (G - 0.32, 90% CI - 0.52 to - 0.12). Compared with the reference RST program, the effects of manipulating training frequency (+ 1 session per week), program duration (+ 1 extra training week), RST volume (+ 200 m per week), number of reps (+ 2 per set), number of sets per session (+ 1 set) or rep distance (+ 10 m per rep) were either non-substantial or comparable with an impairment in at least one outcome measure per programming variable. CONCLUSIONS: Running-based RST improves speed, intermittent running performance, VO2max, RSA, COD ability and CMJ height in trained athletes. Performing three sets of 6 × 30 m sprints, twice per week for 6 weeks is effective for enhancing physical fitness and physiological adaptation. Additionally, since our findings do not provide conclusive support for the manipulation of RST variables, further work is needed to better understand how programming factors can be manipulated to augment training-induced adaptations. STUDY REGISTRATION: Open Science Framework registration https://doi.org/10.17605/OSF.IO/RVNDW .

7.
J Strength Cond Res ; 37(11): 2178-2184, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37639654

RESUMEN

ABSTRACT: Edwards, T, Weakley, J, Banyard, HG, Cripps, A, Piggott, B, Haff, GG, and Joyce, C. Longitudinal development of sprint performance and force-velocity-power characteristics: influence of biological maturation. J Strength Cond Res 37(11): 2178-2184, 2023-This study was designed to investigate the influence of biological maturation on the longitudinal development of sprint performance. Thirty-two subjects performed 2 assessments of maximal sprint performance that were separated by 18 months. Each sprint assessment was measured through a radar gun that collected instantaneous velocity with the velocity-time data used to derive sprint times and force-velocity-power characteristics. The biological maturity of each subject was assessed using a predictive equation, and subjects were grouped according to predicted years from peak height velocity (circa-PHV: -1.0 to 1.0; post-PHV: >1.0). A 2 × 2 mixed model analysis of variance was used to assess group × time interactions, and paired t -tests were used to assess the longitudinal changes for each maturity group. No significant group × time interactions were observed for any sprint time or force-velocity-power characteristic. The circa-PHV group experienced significant within-group changes in maximal theoretical velocity (6.35 vs. 5.47%; effect size [ES] = 1.26 vs. 0.52) and 5-m sprint time (-3.63% vs. -2.94%; ES = -0.64 vs. -0.52) compared with the post-PHV group. There was no significant change in the magnitude of relative theoretical maximum force in either group; however, both the circa-PHV and post-PHV groups significantly improved the orientation of force production at the start of the sprint (RFmax [4.91 vs. 4.46%; ES = 0.79 vs. 0.74, respectively]). Considering these findings, it is recommended that practitioners adopt training methods aimed to improve relative lower-limb force production, such as traditional strength training and sled pulling and pushing, to improve sprint performance and relative theoretical maximum force.


Asunto(s)
Rendimiento Atlético , Entrenamiento de Fuerza , Carrera , Humanos , Extremidad Inferior , Entrenamiento de Fuerza/métodos , Estatura
8.
Biol Sport ; 40(3): 805-811, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37398963

RESUMEN

The purpose of this study was to investigate the validity of a low-cost friction encoder against a criterion measure (strain gauge combined with a linear encoder) for assessing velocity, force and power in flywheel exercise devices. Ten young and physically active volunteers performed two sets of 14 maximal squats on a flywheel inertial device (YoYo Technology, Stockholm, Sweden) with five minutes rest between each set. Two different resistances were used (0.075 kg · m2 for the first set; 0.025 kg · m2 for the second). Mean velocity (Vrep), force (Frep) and power (Prep) for each repetition were assessed simultaneously via a friction encoder (Chronojump, Barcelona, Spain), and with a strain gauge combined with a linear encoder (MuscleLab 6000, Ergotest Technology, Porsgrunn, Norway). Results are displayed as (Mean [CI 90%]). Compared to criterion measures, mean bias for the practical measures of Vrep, Frep and Prep were moderate (-0.95 [-0.99 to -0.92]), small (0.53 [0.50 to 0.56]) and moderate (-0.68 [-0.71 to -0.65]) respectively. The typical error of estimate (TEE) was small for all three parameters; Vrep (0.23 [0.20 to 0.25]), Frep (0.20 [0.18 to 0.22]) and Prep (0.18 [0.16 to 0.20]). Correlations with MuscleLab were nearly perfect for all measures in all load configurations. Based on these findings, the friction encoder provides valid measures of velocity, force and power in flywheel exercise devices. However, as error did exist between measures, the same testing protocol should be used when assessing changes in these parameters over time, or when aiming to perform inter-individual comparisons.

9.
Sports Med ; 53(9): 1789-1803, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37410360

RESUMEN

BACKGROUND: Augmented feedback is often used during resistance training to enhance acute physical performance and has shown promise as a method of improving chronic physical adaptation. However, there are inconsistencies in the scientific literature regarding the magnitude of the acute and chronic responses to feedback and the optimal method with which it is provided. OBJECTIVE: This systematic review and meta-analysis aimed to (1) establish the evidence for the effects of feedback on acute resistance training performance and chronic training adaptations; (2) quantify the effects of feedback on acute kinematic outcomes and changes in physical adaptations; and (3) assess the effects of moderating factors on the influence of feedback during resistance training. METHODS: Twenty studies were included in this systematic review and meta-analysis. This review was performed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Four databases were searched, and studies were included if they were peer-reviewed investigations, written in English, and involved the provision of feedback during or following dynamic resistance exercise. Furthermore, studies must have evaluated either acute training performance or chronic physical adaptations. Risk of bias was assessed using a modified Downs and Black assessment tool. Multilevel meta-analyses were performed to quantify the effects of feedback on acute and chronic training outcomes. RESULTS: Feedback enhanced acute kinetic and kinematic outputs, muscular endurance, motivation, competitiveness, and perceived effort, while greater improvements in speed, strength, jump performance, and technical competency were reported when feedback was provided chronically. Furthermore, greater frequencies of feedback (e.g., following every repetition) were found to be most beneficial for enhancing acute performance. Results demonstrated that feedback improves acute barbell velocities by approximately 8.4% (g = 0.63, 95% confidence interval [CI] 0.36-0.90). Moderator analysis revealed that both verbal (g = 0.47, 95% CI 0.22-0.71) and visual feedback (g = 1.11, 95% CI 0.61-1.61) were superior to no feedback, but visual feedback was superior to verbal feedback. For chronic outcomes, jump performance might have been positively influenced (g = 0.39, 95% CI - 0.20 to 0.99) and short sprint performance was likely enhanced (g = 0.47, 95% CI 0.10-0.84) to a greater extent when feedback is provided throughout a training cycle. CONCLUSIONS: Feedback during resistance training can lead to enhanced acute performance within a training session and greater chronic adaptations. Studies included in our analysis demonstrated a positive influence of feedback, with all outcomes showing superior results than when no feedback is provided. For practitioners, it is recommended that high-frequency, visual feedback is consistently provided to individuals when they complete resistance training, and this may be particularly useful during periods of low motivation or when greater competitiveness is beneficial. Alternatively, researchers must be aware of the ergogenic effects of feedback on acute and chronic responses and ensure that feedback is standardised when investigating resistance training.


Asunto(s)
Entrenamiento de Fuerza , Humanos , Entrenamiento de Fuerza/métodos , Fuerza Muscular/fisiología , Ejercicio Físico/fisiología , Adaptación Fisiológica , Aclimatación
10.
Sports Med ; 53(11): 2135-2146, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37495758

RESUMEN

BACKGROUND: Athletes can face scenarios in which they are confined to bed rest (e.g., due to injury or illness). Existing research in otherwise healthy individuals indicates that those entering bed rest with the greatest physical performance level might experience the greatest performance decrements, which indirectly suggests that athletes might be more susceptible to the detrimental consequences of bed rest than general populations. Therefore, a comprehensive understanding of the effects of bed rest might help guide the medical care of athletes during and following bed rest. OBJECTIVE: This systematic and narrative review aimed to (1) establish the evidence for the effects of bed rest on physical performance in athletes; (2) discuss potential countermeasures to offset these negative consequences; and (3) identify the time-course of recovery following bed rest to guide return-to-sport rehabilitation. METHODS: This review was performed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Four databases were searched (SPORTDiscus, Web of Science, Scopus, and MEDLINE/PubMed) in October of 2022, and studies were included if they were peer-reviewed investigations, written in English, and investigated the effects of horizontal bed rest on changes in physical capacities and qualities in athletes (defined as Tier 3-5 participants). The reporting quality of the research was assessed using a modified version of the Downs & Black checklist. Furthermore, findings from studies that involved participants in Tiers 1-2 were presented and synthesized using a narrative approach. RESULTS: Our systematic review of the literature using a rigorous criterion of 'athletes' revealed zero scientific publications. Nevertheless, as a by-product of our search, seven studies were identified that involved apparently healthy individuals who performed specific exercise training prior to bed rest. CONCLUSIONS: Based on the limited evidence from studies involving non-athletes who were otherwise healthy prior to bed rest, we generally conclude that (1) bed rest rapidly (within 3 days) decreases upright endurance exercise performance, likely due to a rapid loss in plasma volume; whereas strength is reduced within 5 days, likely due to neural factors as well as muscle atrophy; (2) fluid/salt supplementation may be an effective countermeasure to protect against decrements in endurance performance during bed rest; while a broader array of potentially effective countermeasures exists, the efficacy of these countermeasures for previously exercise-trained individuals requires further study; and (3) athletes likely require at least 2-4 weeks of progressive rehabilitation following bed rest of ≤ 28 days, although the timeline of recovery might need to be extended depending on the underlying reason for bed rest (e.g., injury or illness). Despite these general conclusions from studies involving non-athletes, our primary conclusion is that substantial effort and research is still required to quantify the effects of bed rest on physical performance, identify effective countermeasures, and provide return-to-sport timelines in bona fide athletes. TRIAL REGISTRATION NUMBER AND DATE OF REGISTRATION: Registration ID: osf.io/d3aew; Date: October 24, 2022.

11.
Sports Med Open ; 9(1): 28, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37171517

RESUMEN

Resistance training is a method of enhancing strength, gait speed, mobility, and health. However, the external load required to induce these benefits is a contentious issue. A growing body of evidence suggests that when lower load resistance training [i.e., loads < 50% of one-repetition maximum (1RM)] is completed within close proximity to concentric failure, it can serve as an effective alternative to traditional higher load (i.e., loads > 70% of 1RM) training and in many cases can promote similar or even superior physiological adaptations. Such findings are important given that confidence with external loads and access to training facilities and equipment are commonly cited barriers to regular resistance training. Here, we review some of the mechanisms and physiological changes in response to lower load resistance training. We also consider the evidence for applying lower loads for those at risk of cardiovascular and metabolic diseases and those with reduced mobility. Finally, we provide practical recommendations, specifically that to maximize the benefits of lower load resistance training, high levels of effort and training in close proximity to concentric failure are required. Additionally, using lower loads 2-3 times per week with 3-4 sets per exercise, and loads no lower than 30% of 1RM can enhance muscle hypertrophy and strength adaptations. Consequently, implementing lower load resistance training can be a beneficial and viable resistance training method for a wide range of fitness- and health-related goals.

12.
Sports Med ; 53(8): 1609-1640, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37222864

RESUMEN

BACKGROUND: Repeated-sprint training (RST) involves maximal-effort, short-duration sprints (≤ 10 s) interspersed with brief recovery periods (≤ 60 s). Knowledge about the acute demands of RST and the influence of programming variables has implications for training prescription. OBJECTIVES: To investigate the physiological, neuromuscular, perceptual and performance demands of RST, while also examining the moderating effects of programming variables (sprint modality, number of repetitions per set, sprint repetition distance, inter-repetition rest modality and inter-repetition rest duration) on these outcomes. METHODS: The databases Pubmed, SPORTDiscus, MEDLINE and Scopus were searched for original research articles investigating overground running RST in team sport athletes ≥ 16 years. Eligible data were analysed using multi-level mixed effects meta-analysis, with meta-regression performed on outcomes with ~ 50 samples (10 per moderator) to examine the influence of programming factors. Effects were evaluated based on coverage of their confidence (compatibility) limits (CL) against elected thresholds of practical importance. RESULTS: From 908 data samples nested within 176 studies eligible for meta-analysis, the pooled effects (± 90% CL) of RST were as follows: average heart rate (HRavg) of 163 ± 9 bpm, peak heart rate (HRpeak) of 182 ± 3 bpm, average oxygen consumption of 42.4 ± 10.1 mL·kg-1·min-1, end-set blood lactate concentration (B[La]) of 10.7 ± 0.6 mmol·L-1, deciMax session ratings of perceived exertion (sRPE) of 6.5 ± 0.5 au, average sprint time (Savg) of 5.57 ± 0.26 s, best sprint time (Sbest) of 5.52 ± 0.27 s and percentage sprint decrement (Sdec) of 5.0 ± 0.3%. When compared with a reference protocol of 6 × 30 m straight-line sprints with 20 s passive inter-repetition rest, shuttle-based sprints were associated with a substantial increase in repetition time (Savg: 1.42 ± 0.11 s, Sbest: 1.55 ± 0.13 s), whereas the effect on sRPE was trivial (0.6 ± 0.9 au). Performing two more repetitions per set had a trivial effect on HRpeak (0.8 ± 1.0 bpm), B[La] (0.3 ± 0.2 mmol·L-1), sRPE (0.2 ± 0.2 au), Savg (0.01 ± 0.03) and Sdec (0.4; ± 0.2%). Sprinting 10 m further per repetition was associated with a substantial increase in B[La] (2.7; ± 0.7 mmol·L-1) and Sdec (1.7 ± 0.4%), whereas the effect on sRPE was trivial (0.7 ± 0.6). Resting for 10 s longer between repetitions was associated with a substantial reduction in B[La] (-1.1 ± 0.5 mmol·L-1), Savg (-0.09 ± 0.06 s) and Sdec (-1.4 ± 0.4%), while the effects on HRpeak (-0.7 ± 1.8 bpm) and sRPE (-0.5 ± 0.5 au) were trivial. All other moderating effects were compatible with both trivial and substantial effects [i.e. equal coverage of the confidence interval (CI) across a trivial and a substantial region in only one direction], or inconclusive (i.e. the CI spanned across substantial and trivial regions in both positive and negative directions). CONCLUSIONS: The physiological, neuromuscular, perceptual and performance demands of RST are substantial, with some of these outcomes moderated by the manipulation of programming variables. To amplify physiological demands and performance decrement, longer sprint distances (> 30 m) and shorter, inter-repetition rest (≤ 20 s) are recommended. Alternatively, to mitigate fatigue and enhance acute sprint performance, shorter sprint distances (e.g. 15-25 m) with longer, passive inter-repetition rest (≥ 30 s) are recommended.


Asunto(s)
Rendimiento Atlético , Carrera , Humanos , Deportes de Equipo , Carrera/fisiología , Fatiga , Atletas , Ácido Láctico , Rendimiento Atlético/fisiología
13.
Sports Med ; 53(8): 1559-1593, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37071283

RESUMEN

BACKGROUND: With the increasing professionalisation of youth sports, training load monitoring is increasingly common in adolescent athletes. However, the research examining the relationship between training load and changes in physical qualities, injury, or illness in adolescent athletes is yet to be synthesised in a systematic review. OBJECTIVE: The aim of this review was to systematically examine the research assessing internal and external methods of monitoring training load and physical qualities, injury, or illness in adolescent athletes. METHODS: Systematic searches of SPORTDiscus, Web of Science, CINAHL and SCOPUS were undertaken from the earliest possible records to March 2022. Search terms included synonyms relevant to adolescents, athletes, physical qualities, injury, or illness. To be eligible for inclusion, articles were required to (1) be original research articles; (2) be published in a peer-reviewed journal; (3) include participants aged between 10 and 19 years and participating in competitive sport; (4) report a statistical relationship between a measure of internal and/or external load and physical qualities, injury or illness. Articles were screened and assessed for methodological quality. A best-evidence synthesis was conducted to identify trends in the relationships reported. RESULTS: The electronic search yielded 4125 articles. Following screening and a review of references, 59 articles were included. The most commonly reported load monitoring tools were session ratings of perceived exertion (n = 29) and training duration (n = 22). Results of the best-evidence synthesis identified moderate evidence of positive relationships between resistance training volume load and improvement in strength, and between throw count and injury. However, evidence for other relationships between training load and change in physical qualities, injury, or illness were limited or inconsistent. CONCLUSIONS: Practitioners should consider monitoring resistance training volume load for strength training. Additionally, where appropriate, monitoring throw counts may be useful in identifying injury risk. However, given the lack of clear relationships between singular measures of training load with physical qualities, injury, or illness, researchers should consider multivariate methods of analysing training load, as well as factors that may mediate the load-response relationship, such as maturation.


Asunto(s)
Entrenamiento de Fuerza , Deportes , Deportes Juveniles , Adolescente , Humanos , Niño , Adulto Joven , Adulto , Deportes/fisiología , Atletas , Examen Físico
14.
Sleep Med Rev ; 69: 101764, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36870101

RESUMEN

The consumption of caffeine in response to insufficient sleep may impair the onset and maintenance of subsequent sleep. This systematic review and meta-analysis investigated the effect of caffeine on the characteristics of night-time sleep, with the intent to identify the time after which caffeine should not be consumed prior to bedtime. A systematic search of the literature was undertaken with 24 studies included in the analysis. Caffeine consumption reduced total sleep time by 45 min and sleep efficiency by 7%, with an increase in sleep onset latency of 9 min and wake after sleep onset of 12 min. Duration (+6.1 min) and proportion (+1.7%) of light sleep (N1) increased with caffeine intake and the duration (-11.4 min) and proportion (-1.4%) of deep sleep (N3 and N4) decreased with caffeine intake. To avoid reductions in total sleep time, coffee (107 mg per 250 mL) should be consumed at least 8.8 h prior to bedtime and a standard serve of pre-workout supplement (217.5 mg) should be consumed at least 13.2 h prior to bedtime. The results of the present study provide evidence-based guidance for the appropriate consumption of caffeine to mitigate the deleterious effects on sleep.


Asunto(s)
Cafeína , Sueño , Humanos , Cafeína/farmacología , Sueño/fisiología , Polisomnografía/métodos , Café , Privación de Sueño
15.
J Strength Cond Res ; 37(8): 1566-1572, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36727699

RESUMEN

ABSTRACT: Weakley, J, Castilla, AP, Ramos, AG, Banyard, H, Thurlow, F, Edwards, T, Morrison, M, McMahon, E, and Owen, C. The effect of traditional, rest redistribution, and velocity-based prescription on repeated sprint training performance and responses in semi-professional athletes. J Strength Cond Res 37(8): 1566-1572, 2023-The aim of this study was to investigate the effects of traditional, rest redistribution, and velocity-based repeated sprint training methods on repeated sprint performance, perceived effort, heart rate, and changes in force-velocity-power (FVP) profiles in male semiprofessional athletes. In a randomized crossover design, a traditional (2 sets of 6 repetitions [TRAD]), 2 different rest redistribution (4 sets of 3 repetitions [RR4] and 12 sets of 1 repetition [RR12]), and a 5% velocity loss (VL5%) (12 repetitions, with sets terminated when a 5% reduction in mean velocity had occurred) condition were completed. Mean and peak velocity, mean heart rate, and differential ratings of perceived exertion (dRPE) were measured throughout each session, while horizontal FVP profiles were assessed presession and postsession. The RR4 and RR12 conditions allowed the greatest maintenance of velocity, while the RR4, RR12, and VL5% had a moderate , significantly greater mean heart rate than the traditional condition. Trivial , nonsignificant differences between all conditions were observed in dRPE of the legs and breathlessness and FVP profiles. These findings indicate that rest redistribution can allow for greater maintenance of sprint velocity and heart rate, without altering perceived effort during repeated sprint training. In addition, velocity-loss thresholds may be a feasible method of prescription if athletes have diverse physical qualities and reductions in sprint performance during repeated sprint training are undesirable. Practitioners should consider these outcomes when designing repeated sprint training sessions because the strategic use of these methods can alter sprint performance and internal load without changing perceptions of intensity.


Asunto(s)
Rendimiento Atlético , Entrenamiento de Fuerza , Humanos , Masculino , Atletas , Rendimiento Atlético/fisiología , Fuerza Muscular/fisiología , Entrenamiento de Fuerza/métodos , Descanso , Estudios Cruzados
16.
J Strength Cond Res ; 37(8): 1551-1558, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36662153

RESUMEN

ABSTRACT: Pérez-Castilla, A, Miras-Moreno, S, Weakley, J, and García-Ramos, A. Relationship between the number of repetitions in reserve and lifting velocity during the prone bench pull exercise: an alternative approach to control proximity-to-failure. J Strength Cond Res 37(8): 1551-1558, 2023-This study aimed to explore the goodness-of-fit and accuracy of both general and individual relationships between the number of repetitions in reserve (RIR) and the repetition velocity during the Smith machine prone bench pull exercise. Fifteen male sports science students completed 3 sessions separated by 48-72 hours. The first session was used to determine the bench pull 1 repetition maximum (1RM). The second and third sessions were identical and consisted of 3 single sets (60, 70, and 80% 1RM) of repetitions to momentary muscular failure separated by 10 minutes during the Smith machine prone bench pull exercise. General (i.e., pooling together the data from the 15 subjects) and individual RIR-velocity relationships were constructed from the data collected in the second session by pooling the data from the 3 loads (multiple-loads) or specifically for each load (load-specific). The 4 RIR-velocity relationship models were ranked by their goodness-of-fit as follows: individual load-specific ( r = 0.93) > individual multiple-loads ( r = 0.83) > general multiple-loads ( r = 0.65) > general load-specific ( r = 0.61). The accuracy when predicting the RIR in the third session based on the RIR-velocity equations obtained in the second session was acceptable and comparable for the 4 RIR-velocity relationship models (absolute errors ≤2 RIR). However, the 4 RIR-velocity relationship models significantly underestimated the RIR for ≥1 RIR and overestimated the RIR for 0 RIR. These results suggest that the 4 RIR-velocity relationship models are equally effective to quantify proximity-to-failure during the Smith machine prone bench pull exercise.


Asunto(s)
Elevación , Entrenamiento de Fuerza , Humanos , Masculino , Levantamiento de Peso , Entrenamiento de Fuerza/métodos , Fuerza Muscular , Ejercicio Físico , Músculo Esquelético
17.
J Strength Cond Res ; 37(1): 234-238, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36515612

RESUMEN

ABSTRACT: Weakley, J, McCosker, C, Chalkley, D, Johnston, R, Munteanu, G, and Morrison, M. Comparison of sprint timing methods on performance, and displacement and velocity at timing initiation. J Strength Cond Res 37(1): 234-238, 2023-Sprint testing is commonly used to assess speed and acceleration in athletes. However, vastly different outcomes have been reported throughout the literature. These differences are likely due to the sprint timing method rather than differences in athlete ability. Consequently, this study compared different sprint starting methods on sprint time and quantified the velocity and displacement of the athlete at the moment timing is initiated. Starting in a staggered 2-point stance, 12 team sport athletes were required to accelerate 10 meters for 10 repetitions. During each repetition, 5 independent timing methods were triggered. The methods were (a) triggering a Move sensor; (b) starting 50 cm behind the line; (c) triggering a front-foot switch; (d) triggering a rear-foot switch; and (e) starting with the front foot on the line. Timing for each method was initiated at different points during the acceleration phase, and the displacement and velocity of the centroid of the pelvis at the point of timing initiation was assessed under high-speed motion capture. The Move sensor had the smallest displacement and lowest velocity at the point of timing initiation, whereas the front-foot trigger demonstrated the largest displacement and highest velocities. Trivial to very large effect size differences were observed between all methods in displacement and velocity at the point of timing initiation. Furthermore, small to very large differences in time to 5 m were found. These findings emphasize that sprint outcomes should not be compared, unless starting methods are identical. In addition, to detect real change in performance, consistent standardized protocols should be implemented.


Asunto(s)
Rendimiento Atlético , Carrera , Humanos , Aceleración , Atletas , Extremidad Inferior
18.
J Strength Cond Res ; 37(4): 787-792, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35947514

RESUMEN

ABSTRACT: Weakley, J, Munteanu, G, Cowley, N, Johnston, R, Morrison, M, Gardiner, C, Pérez-Castilla, A, and García-Ramos, A. The criterion validity and between-day reliability of the Perch for measuring barbell velocity during commonly used resistance training exercises. J Strength Cond Res 37(4): 787-792, 2023-This study aimed to assess the criterion validity and between-day reliability (accounting for technological and biological variability) of mean and peak concentric velocity from the Perch measurement system. On 2 testing occasions, 16 subjects completed repetitions at 20, 40, 60, 80, 90, and 100% of 1-repetition maximum in the free-weight barbell back squat and bench press. To assess criterion validity, values from the Perch and a 3-dimensional motion capture system (criterion) were compared. Technological variability was assessed by determining whether the differences between the Perch and criterion for each load were comparable for both testing sessions, whereas between-day reliability with both technological and biological variability was calculated from Perch values across days. Generalized estimating equations were used to calculate R2 and root mean square error, whereas Bland-Altman plots assessed magnitude of difference between measures. To support monitoring of athletes over time, standard error of measurement and minimum detectable changes (MDC) were calculated. There was excellent agreement between the Perch and criterion device, with mean velocity in both exercises demonstrating a mean bias ranging from -0.01 to 0.01 m·s -1 . For peak velocity, Perch underestimated velocity compared with the criterion ranging from -0.08 to -0.12 m·s -1 for the back squat and -0.01 to -0.02 m·s -1 for the bench press. Technological variability between-days were all less than the MDC. These findings demonstrate that the Perch provides valid and reliable mean and peak concentric velocity outputs across a range of velocities. Therefore, practitioners can confidently implement this device for the monitoring and prescription of resistance training.


Asunto(s)
Percas , Entrenamiento de Fuerza , Humanos , Animales , Entrenamiento de Fuerza/métodos , Reproducibilidad de los Resultados , Levantamiento de Peso , Ejercicio Físico , Fuerza Muscular
19.
J Strength Cond Res ; 37(3): 641-645, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35916875

RESUMEN

ABSTRACT: Edwards, T, Weakley, J, Woods, CT, Breed, R, Benson, AC, Suchomel, TJ, and Banyard, HG. Comparison of countermovement jump and squat jump performance between 627 state and non-state representative junior Australian football players. J Strength Cond Res 37(3): 641-645, 2023-This cross-sectional study investigated differences in lower-body power of state and nonstate representative junior Australian football (AF) players through countermovement jump (CMJ) and squat jump (SJ) performance. A total of 627 players performed the CMJ and SJ at the end of the preseason phase over a 2-week period, with each player grouped according to their age (under 18 [U18] or under 16 [U16]), and highest competition level played (state representation and nonstate representation). One-way multivariate analysis of variance (MANOVA), follow up ANOVA's, and Cohen's d effect sizes were used to identify significant main effects and between-group differences. Statistical significance was set at α < 0.05. Significant small-to-moderate effect size differences were observed between competition level, with state U18 and U16 players recording greater CMJ and SJ height, and peak power (PP), compared with their nonstate representative peers, respectively. Similarly, significant small-to-moderate effect size differences existed between age groups, with nonstate U18 players recording greater CMJ and SJ height and PP than nonstate U16 counterparts. However, state U18 and state U16 only differed in CMJ PP. No differences were found between competition level or age groups for the difference between CMJ and SJ jump height (CMJSJ diff ). Together, these findings suggest that state and nonstate representative junior AFs may have a similar ability to use the stretch-shortening cycle, despite state representative players jumping higher in the CMJ and SJ.


Asunto(s)
Rendimiento Atlético , Deportes de Equipo , Humanos , Australia , Estudios Transversales , Fuerza Muscular
20.
Eur J Sport Sci ; 23(2): 178-188, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35142263

RESUMEN

Interpreting the physical qualities of youth athletes is complex due to the effects of growth, maturation and development. This study aimed to evaluate the effect of position, chronological age, relative age and maturation on the physical qualities of elite male academy rugby union players. 1,424 participants (n = 2,381 observations) from nine Rugby Football Union regional academies prospectively completed a physical testing battery at three time points, across three playing seasons. Anthropometrics, body composition, muscular power, muscular strength, speed, aerobic capacity and running momentum were assessed. Positional differences were identified for all physical qualities. The largest effect sizes were observed for the associations between chronological age (d = 0.65-0.73) and maturation (d = -0.77 to -0.69) and body mass related variables (i.e. body mass and running momentum). Relative strength, maximum velocity and aerobic capacity were the only models to include two fixed effects with all other models including at least three fixed effects (i.e. position and a combination of chronological age, relative age and maturation). These findings suggest a multidimensional approach considering position, chronological age, relative age and maturation is required to effectively assess the physical qualities of male age grade rugby union players. Therefore practitioners should use regression equations rather than traditional descriptive statistic tables to provide individualised normative comparisons thus enhancing the application of testing results for talent identification and player development.Highlights Practitioners should record and incorporate position, chronological age, relative age and maturation into the physical evaluation of elite academy rugby union players.The regression equations provided within this study offer highly generalisable comparative values that are specific to a players chronological and biological development.Through the use of enhanced player evaluation practitioners will be able to make more informed decisions surrounding talent identification and athlete development.


Asunto(s)
Rendimiento Atlético , Adolescente , Humanos , Masculino , Rugby , Antropometría , Composición Corporal , Fuerza Muscular , Aptitud Física
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...