Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Dent Res ; 97(1): 108-117, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28954202

RESUMEN

A broad spectrum of human diseases called ciliopathies is caused by defective primary cilia morphology or signal transduction. The primary cilium is a solitary organelle that responds to mechanical and chemical stimuli from extracellular and intracellular environments. Transmembrane protein 107 (TMEM107) is localized in the primary cilium and is enriched at the transition zone where it acts to regulate protein content of the cilium. Mutations in TMEM107 were previously connected with oral-facial-digital syndrome, Meckel-Gruber syndrome, and Joubert syndrome exhibiting a range of ciliopathic defects. Here, we analyze a role of Tmem107 in craniofacial development with special focus on palate formation, using mouse embryos with a complete knockout of Tmem107. Tmem107-/- mice were affected by a broad spectrum of craniofacial defects, including shorter snout, expansion of the facial midline, cleft lip, extensive exencephaly, and microphthalmia or anophthalmia. External abnormalities were accompanied by defects in skeletal structures, including ossification delay in several membranous bones and enlargement of the nasal septum or defects in vomeronasal cartilage. Alteration in palatal shelves growth resulted in clefting of the secondary palate. Palatal defects were caused by increased mesenchymal proliferation leading to early overgrowth of palatal shelves followed by defects in their horizontalization. Moreover, the expression of epithelial stemness marker SOX2 was altered in the palatal shelves of Tmem107-/- animals, and differences in mesenchymal SOX9 expression demonstrated the enhancement of neural crest migration. Detailed analysis of primary cilia revealed region-specific changes in ciliary morphology accompanied by alteration of acetylated tubulin and IFT88 expression. Moreover, Shh and Gli1 expression was increased in Tmem107-/- animals as shown by in situ hybridization. Thus, TMEM107 is essential for proper head development, and defective TMEM107 function leads to ciliary morphology disruptions in a region-specific manner, which may explain the complex mutant phenotype.


Asunto(s)
Desarrollo Maxilofacial/genética , Proteínas de la Membrana/fisiología , Cráneo/crecimiento & desarrollo , Animales , Cilios , Labio Leporino/genética , Anomalías Craneofaciales/genética , Huesos Faciales/anomalías , Huesos Faciales/crecimiento & desarrollo , Ratones , Ratones Noqueados , Defectos del Tubo Neural/genética , Hueso Paladar/anomalías , Factores de Transcripción SOX/metabolismo
3.
Curr Biol ; 9(3): 109-15, 1999 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-10021383

RESUMEN

BACKGROUND: . The morphological and functional evolution of appendages has played a critical role in animal evolution, but the developmental genetic mechanisms underlying appendage diversity are not understood. Given that homologous appendage development is controlled by the same Hox gene in different organisms, and that Hox genes are transcription factors, diversity may evolve from changes in the regulation of Hox target genes. Two impediments to understanding the role of Hox genes in morphological evolution have been the limited number of organisms in which Hox gene function can be studied and the paucity of known Hox-regulated target genes. We have therefore analyzed a butterfly homeotic mutant 'Hindsight', in which portions of the ventral hindwing pattern are transformed to ventral forewing identity, and we have compared the regulation of target genes by the Ultrabithorax (Ubx) gene product in Lepidopteran and Dipteran hindwings. RESULTS: . We show that Ubx gene expression is lost from patches of cells in developing Hindsight hindwings, correlating with changes in wing pigmentation, color pattern elements, and scale morphology. We use this mutant to study how regulation of target genes by Ubx protein differs between species. We find that several Ubx-regulated genes in the Drosophila haltere are not repressed by Ubx in butterfly hindwings, but that Distal-less (Dll) expression is regulated by Ubx in a unique manner in butterflies. CONCLUSIONS: . The morphological diversification of insect hindwings has involved the acquisition of different sets of target genes by Ubx in different lineages. Changes in Hox-regulated target gene sets are, in general, likely to underlie the morphological divergence of homologous structures between animals.


Asunto(s)
Mariposas Diurnas/crecimiento & desarrollo , Proteínas de Unión al ADN/fisiología , Proteínas de Drosophila , Regulación del Desarrollo de la Expresión Génica , Genes Homeobox , Proteínas de Homeodominio/fisiología , Proteínas de Insectos/fisiología , Factores de Transcripción , Alas de Animales/crecimiento & desarrollo , Animales , Mariposas Diurnas/genética , Proteínas de Unión al ADN/genética , Dípteros/genética , Dípteros/crecimiento & desarrollo , Evolución Molecular , Proteínas de Homeodominio/genética , Hibridación in Situ , Proteínas de Insectos/genética , Datos de Secuencia Molecular , Morfogénesis/genética , Homología de Secuencia de Ácido Nucleico , Especificidad de la Especie , Alas de Animales/ultraestructura
4.
Genes Dev ; 12(10): 1474-82, 1998 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-9585507

RESUMEN

Arthropods and vertebrates are constructed of many serially homologous structures whose individual patterns are regulated by Hox genes. The Hox-regulated target genes and developmental pathways that determine the morphological differences between any homologous structures are not known. The differentiation of the Drosophila haltere from the wing through the action of the Ultrabithorax (Ubx) gene is a classic example of Hox regulation of serial homology, although no Ubx-regulated genes in the haltere have been identified previously. Here, we show that Ubx represses the expression of the Wingless (Wg) signaling protein and a subset of Wg- and Decapentaplegic-activated genes such as spalt-related, vestigial, Serum Response Factor, and achaete-scute, whose products regulate morphological features that differ between the wing and haltere. In addition, we found that some genes in the same developmental pathway are independently regulated by Ubx. Our results suggest that Ubx, and Hox genes in general, independently and selectively regulate genes that act at many levels of regulatory hierarchies to shape the differential development of serially homologous structures.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Proteínas de Drosophila , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Genes Homeobox , Proteínas de Homeodominio/fisiología , Proteínas de Insectos/fisiología , Proteínas Proto-Oncogénicas/biosíntesis , Proteínas Represoras/fisiología , Factores de Transcripción , Alas de Animales/crecimiento & desarrollo , Animales , Drosophila melanogaster/crecimiento & desarrollo , Proteínas de Insectos/biosíntesis , Proteínas de Insectos/genética , Morfogénesis , Proteínas Proto-Oncogénicas/genética , Proteínas Recombinantes de Fusión/fisiología , Proteína Wnt1
5.
Nature ; 375(6526): 58-61, 1995 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-7723843

RESUMEN

The evolution of wings catalysed the radiation of insects which make up some 75 per cent of known animals. Fossil evidence suggests that wings evolved from a segment of the leg and that early pterygotes bore wings on all thoracic and abdominal segments. The pterygote body plan subsequently diverged producing orders bearing three, two or just one pair of thoracic wings. We have investigated the role of homeotic genes in pterygote evolution by examining their function in Drosophila wing development and their expression in a primitive apterygote. Wing formation is not promoted by any homeotic gene, but is repressed in different segments by different homeotic genes. We suggest here that wings first arose without any homeotic gene involvement in an ancestor with a homeotic 'groundplan' similar to modern winged insects and that wing formation subsequently fell under the negative control of individual homeotic genes at different stages of pterygote evolution.


Asunto(s)
Evolución Biológica , Proteínas de Drosophila , Drosophila/genética , Genes Homeobox , Proteínas de Homeodominio , Proteínas Nucleares , Factores de Transcripción , Alas de Animales , Animales , Proteína con Homeodominio Antennapedia , Proteínas de Unión al ADN/genética , Drosophila/embriología , Hormonas de Insectos/genética , Insectos , Alas de Animales/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...