Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Gut Microbes ; 15(2): 2271150, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37908118

RESUMEN

Antibiotics used systemically to treat infections may have off-target effects on the gut microbiome, potentially resulting in the emergence of drug-resistant bacteria or selection of pathogenic species. These organisms may present a risk to the host and spread to the environment with a risk of transmission in the community. To investigate the risk of emergent antibiotic resistance in the gut microbiome following systemic treatment with antibiotics, this metagenomic analysis project used next-generation sequencing, a custom-built metagenomics pipeline, and differential abundance analysis to study the effect of antibiotics (ampicillin, ciprofloxacin, and fosfomycin) in monotherapy and different combinations at high and low doses, to determine the effect on resistome and taxonomic composition in the gut of Balb/c mice. The results showed that low-dose monotherapy treatments showed little change in microbiome composition but did show an increase in expression of many antibiotic-resistant genes (ARGs) posttreatment. Dual combination treatments allowed the emergence of some conditionally pathogenic bacteria and some increase in the abundance of ARGs despite a general decrease in microbiota diversity. Triple combination treatment was the most successful in inhibiting emergence of relevant opportunistic pathogens and completely suppressed all ARGs after 72 h of treatment. The relative abundances of mobile genetic elements that can enhance transmission of antibiotic resistance either decreased or remained the same for combination therapy while increasing for low-dose monotherapy. Combination therapy prevented the emergence of ARGs and decreased bacterial diversity, while low-dose monotherapy treatment increased ARGs and did not greatly change bacterial diversity.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Ratones , Antibacterianos/farmacología , Ampicilina/farmacología , Ciprofloxacina/farmacología , Bacterias/genética , Genes Bacterianos
2.
Clin Pharmacol Ther ; 113(2): 339-348, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36324229

RESUMEN

The US Food and Drug Administration (FDA) has taken steps to bring efficiency to the development of biosimilars, including establishing guidance for the use of pharmacokinetic and pharmacodynamic (PD) similarity study data without a comparative clinical study with efficacy end point(s). To better understand the potential role for PD biomarkers in biosimilar development and inform best practices for biomarker selection and analysis, we conducted a randomized, double-blinded, placebo-controlled, single-dose, parallel-arm clinical study in healthy participants. Eighty-four healthy participants (n = 12 per dose arm) received either placebo or one of three doses of either interferon ß-1a (7.5-30 µg) or pegylated interferon ß-1a (31.25-125 µg) to evaluate the maximum change from baseline and the baseline-adjusted area under the effect curve for the biomarkers neopterin in serum and myxovirus resistance protein 1 in blood. Both PD biomarkers increased following product administration with clear separation from baseline (neopterin: 3.4-fold and 3.9-fold increase for interferon ß-1a and pegylated interferon ß-1a, respectively; myxovirus resistance protein 1: 19.0-fold and 47.2-fold increase for interferon ß-1a and pegylated interferon ß-1a, respectively). The dose-response curves support that therapeutic doses were adequately sensitive to detect differences in both PD biomarkers for consideration in a PD similarity study design. Because baseline levels of both biomarkers are low compared with on-treatment values, there was little difference in using PD measures adjusted to baseline compared with the results without baseline adjustment. This study illustrates potential methodologies for evaluating PD biomarkers and an approach to address information gaps when limited information is publicly available for one or more PD biomarkers.


Asunto(s)
Biosimilares Farmacéuticos , Humanos , Interferón beta-1a/uso terapéutico , Neopterin , Biomarcadores , Polietilenglicoles
3.
Clin Pharmacol Ther ; 113(1): 98-107, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36308070

RESUMEN

Proteomics has the potential to identify pharmacodynamic (PD) biomarkers for similarity assessment of proposed biosimilars without relying on clinical efficacy end points. In this study, with 36 healthy participants randomized to therapeutic doses of interferon-beta 1a products (IFNß-1a) or pegylated-IFNß-1a (pegIFNß-1a) approved to treat multiple sclerosis or placebo, we evaluated the utility of a proteomic assay that profiles > 7,000 plasma proteins. IFNß-1a and pegIFNß-1a resulted in 248 and 528 differentially expressed protein analytes, respectively, between treatment and placebo groups over the time course. Thirty-one proteins were prioritized based on a maximal fold change ≥ 2 from baseline, baseline adjusted area under the effect curve (AUEC) and overlap between the 2 products. Of these, the majority had a significant AUEC compared with placebo in response to either product; 8 proteins showed > 4-fold maximal change from baseline. We identified previously reported candidates, beta-2microglobulin and interferon-induced GTP-binding protein (Mx1) with ~ 50% coefficient of variation (CV) for AUEC, and many new candidates (including I-TAC, C1QC, and IP-10) with CVs ranging from 26%-129%. Upstream regulator analysis of differentially expressed proteins predicted activation of IFNß1 signaling as well as other cytokine, enzyme, and transcription signaling networks by both products. Although independent replication is required to confirm present results, our study demonstrates the utility of proteomics for the identification of individual and composite candidate PD biomarkers that may be leveraged to support clinical pharmacology studies for biosimilar approvals, especially when biologics have complex mechanisms of action or do not have previously characterized PD biomarkers.


Asunto(s)
Biosimilares Farmacéuticos , Esclerosis Múltiple , Humanos , Interferón beta/uso terapéutico , Biosimilares Farmacéuticos/uso terapéutico , Proteómica , Interferón beta-1a/uso terapéutico , Esclerosis Múltiple/tratamiento farmacológico , Biomarcadores
4.
Clin Pharmacol Ther ; 113(1): 80-89, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36184697

RESUMEN

The US Food and Drug Administration (FDA) guidance describes how pharmacodynamic (PD) biomarkers can be used to address residual uncertainty and demonstrate no clinically meaningful differences between a proposed biosimilar and its reference product without relying on clinical efficacy end point(s). Pilot studies and modeling can inform dosing for such PD studies. To that end, we conducted a randomized, double-blinded, placebo-controlled, single-dose, parallel-arm clinical study in healthy participants to evaluate approaches to address information gaps, inform best practices for analysis of biomarker samples and study results, and apply emerging technologies in biomarker characterization. Seventy-two healthy participants (n = 8 per arm) received either placebo or 1 of 4 doses of the interleukin-5 inhibitors mepolizumab (3-24 mg) or reslizumab (0.1-0.8 mg/kg). A clinical study using doses lower than approved therapeutic doses was combined with modeling and simulation to evaluate the dose-response relationship of the biomarker eosinophils. There was no dose-response relationship for eosinophil counts due to variability, although the mepolizumab 24 mg and reslizumab 0.8 mg/kg doses showed clear effects. Published indirect-response models were used to explore eosinophil data across doses from this study and the unstudied therapeutic doses. Simulations were used to calculate typical PD metrics, such as baseline-adjusted area under the effect curve and maximum change from baseline. The simulation results demonstrate sensitivity of eosinophils as a PD biomarker and indicate doses lower than the approved doses would have PD responses overlapping with variability in the placebo arm. The simulation results further highlight the utility of model-based approaches in supporting use of PD biomarkers in biosimilar development.


Asunto(s)
Biosimilares Farmacéuticos , Humanos , Biosimilares Farmacéuticos/uso terapéutico , Biosimilares Farmacéuticos/farmacología , Interleucina-5/farmacología , Eosinófilos , Proyectos de Investigación , Relación Dosis-Respuesta a Droga , Método Doble Ciego
5.
Antibiotics (Basel) ; 11(12)2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36551362

RESUMEN

OBJECTIVE: Employ the hollow fiber infection model (HFIM) to study sequential antibiotic administration (ampicillin, ciprofloxacin and fosfomycin) using human pharmacokinetic profiles to measure changes in the rate of antibiotic resistance development and compare this to simultaneous combination therapy with the same antibiotic combinations. METHODS: Escherichia coli CFT073, a clinical uropathogenic strain, was exposed individually to clinically relevant pharmacokinetic concentrations of ampicillin on day 1, ciprofloxacin on day 2 and fosfomycin on day 3. This sequence was continued for 10 days in the HFIM. Bacterial samples were collected at different time points to enumerate total and resistant bacterial populations. The results were compared with the simultaneous combination therapy previously studied. RESULTS: Sequential antibiotic treatment (ampicillin-ciprofloxacin-fosfomycin sequence) resulted in the early emergence of single and multi-antibiotic-resistant subpopulations, while the simultaneous treatment regimen significantly delayed or prevented the emergence of resistant subpopulations. CONCLUSION: Sequential administration of these antibiotic monotherapies did not significantly delay the emergence of resistant subpopulations compared to simultaneous treatment with combinations of the same antibiotics. Further studies are warranted to evaluate different sequences of the same antibiotics in delaying emergent resistance.

6.
Clin Pharmacol Ther ; 112(4): 882-891, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35694844

RESUMEN

With the ongoing global pandemic of coronavirus disease 2019 (COVID-19), there is an urgent need to accelerate the traditional drug development process. Many studies identified potential COVID-19 therapies based on promising nonclinical data. However, the poor translatability from nonclinical to clinical settings has led to failures of many of these drug candidates in the clinical phase. In this study, we propose a mechanism-based, quantitative framework to translate nonclinical findings to clinical outcome. Adopting a modularized approach, this framework includes an in silico disease model for COVID-19 (virus infection and human immune responses) and a pharmacological component for COVID-19 therapies. The disease model was able to reproduce important longitudinal clinical data for patients with mild and severe COVID-19, including viral titer, key immunological cytokines, antibody responses, and time courses of lymphopenia. Using remdesivir as a proof-of-concept example of model development for the pharmacological component, we developed a pharmacological model that describes the conversion of intravenously administered remdesivir as a prodrug to its active metabolite nucleoside triphosphate through intracellular metabolism and connected it to the COVID-19 disease model. After being calibrated with the placebo arm data, our model was independently and quantitatively able to predict the primary endpoint (time to recovery) of the remdesivir clinical study, Adaptive Covid-19 Clinical Trial (ACTT). Our work demonstrates the possibility of quantitatively predicting clinical outcome based on nonclinical data and mechanistic understanding of the disease and provides a modularized framework to aid in candidate drug selection and clinical trial design for COVID-19 therapeutics.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Antivirales/farmacología , Antivirales/uso terapéutico , Calibración , Humanos , Farmacología en Red , SARS-CoV-2
7.
Clin Pharmacol Ther ; 112(1): 58-61, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34496049

RESUMEN

In vitro cell-based data can be used to support the extension of pharmaceutical approval to patient subsets with unique genetic variants. A set of conditions should be satisfied to support the extension of approval. The disease mechanism should be well described, and the impact of variants on protein function should be reasonably understood. The incidence data should show that clinical trials for the variants in question are not practical. The overall safety and efficacy of the drug should be clear in adequate and well-controlled clinical trials. The clinical trial should include patients found to be responders and nonresponders so that both positive and negative predictive power of the in vitro assay may be measured. The mechanism of action of the drug should be clearly defined and should be consistent with the disease mechanism. The assay system should be qualified, including the following points: (i) each variant construct should be confirmed by bidirectional sequencing; (ii) the in vitro assay should directly measure the variant protein function in comparison with the reference protein; (iii) the assay should be formally validated to the extent possible, clearly demonstrating precision, reproducibility, and sensitivity used to support the efficacy claim; and (iv) the primary data should be available for inspection and analytical validation. The overall goal is a robust and validated cell-based system that can be shown to predict the outcome of targeted therapy.


Asunto(s)
Enfermedades Raras , Proyectos de Investigación , Humanos , Enfermedades Raras/tratamiento farmacológico , Reproducibilidad de los Resultados
8.
Front Med (Lausanne) ; 9: 1109541, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36743666

RESUMEN

The U.S. Food and Drug Administration (FDA) Division of Applied Regulatory Science (DARS) moves new science into the drug review process and addresses emergent regulatory and public health questions for the Agency. By forming interdisciplinary teams, DARS conducts mission-critical research to provide answers to scientific questions and solutions to regulatory challenges. Staffed by experts across the translational research spectrum, DARS forms synergies by pulling together scientists and experts from diverse backgrounds to collaborate in tackling some of the most complex challenges facing FDA. This includes (but is not limited to) assessing the systemic absorption of sunscreens, evaluating whether certain drugs can convert to carcinogens in people, studying drug interactions with opioids, optimizing opioid antagonist dosing in community settings, removing barriers to biosimilar and generic drug development, and advancing therapeutic development for rare diseases. FDA tasks DARS with wide ranging issues that encompass regulatory science; DARS, in turn, helps the Agency solve these challenges. The impact of DARS research is felt by patients, the pharmaceutical industry, and fellow regulators. This article reviews applied research projects and initiatives led by DARS and conducts a deeper dive into select examples illustrating the impactful work of the Division.

9.
CPT Pharmacometrics Syst Pharmacol ; 10(9): 973-982, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34218521

RESUMEN

A critical step to evaluate the potential in vivo antiviral activity of a drug is to connect the in vivo exposure to its in vitro antiviral activity. The Anti-SARS-CoV-2 Repurposing Drug Database is a database that includes both in vitro anti-SARS-CoV-2 activity and in vivo pharmacokinetic data to facilitate the extrapolation from in vitro antiviral activity to potential in vivo antiviral activity for a large set of drugs/compounds. In addition to serving as a data source for in vitro anti-SARS-CoV-2 activity and in vivo pharmacokinetic information, the database is also a calculation tool that can be used to compare the in vitro antiviral activity with in vivo drug exposure to identify potential anti-SARS-CoV-2 drugs. Continuous development and expansion are feasible with the public availability of this database.


Asunto(s)
Antivirales/farmacología , Bases de Datos Farmacéuticas , SARS-CoV-2/efectos de los fármacos , Antivirales/farmacocinética , Reposicionamiento de Medicamentos/métodos , Humanos
10.
Clin Transl Sci ; 14(6): 2208-2219, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34080766

RESUMEN

Following a decision to require label warnings for concurrent use of opioids and benzodiazepines and increased risk of respiratory depression and death, the US Food and Drug Administratioin (FDA) recognized that other sedative psychotropic drugs may be substituted for benzodiazepines and be used concurrently with opioids. In some cases, data on the ability of these alternatives to depress respiration alone or in conjunction with an opioid are lacking. A nonclinical in vivo model was developed that could detect worsening respiratory depression when a benzodiazepine (diazepam) was used in combination with an opioid (oxycodone) compared to the opioid alone based on an increased arterial partial pressure of carbon dioxide (pCO2 ). The current study used that model to assess the impact on respiration of non-benzodiazepine sedative psychotropic drugs representative of different drug classes (clozapine, quetiapine, risperidone, zolpidem, trazodone, carisoprodol, cyclobenzaprine, mirtazapine, topiramate, paroxetine, duloxetine, ramelteon, and suvorexant) administered alone and with oxycodone. At clinically relevant exposures, paroxetine, trazodone, and quetiapine given with oxycodone significantly increased pCO2 above the oxycodone effect. Analyses indicated that most pCO2 interaction effects were due to pharmacokinetic interactions resulting in increased oxycodone exposure. Increased pCO2 recorded with oxycodone-paroxetine co-administration exceeded expected effects from only drug exposure suggesting another mechanism for the increased pharmacodynamic response. This study identified drug-drug interaction effects depressing respiration in an animal model when quetiapine or paroxetine were co-administered with oxycodone. Clinical pharmacodynamic drug interaction studies are being conducted with these drugs to assess translatability of these findings.


Asunto(s)
Quimioterapia Combinada/efectos adversos , Hipnóticos y Sedantes/efectos adversos , Oxicodona/efectos adversos , Psicotrópicos/efectos adversos , Insuficiencia Respiratoria/inducido químicamente , Animales , Oxicodona/administración & dosificación , Psicotrópicos/administración & dosificación , Ratas , Ratas Sprague-Dawley
12.
Int J Antimicrob Agents ; 55(4): 105861, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31838036

RESUMEN

Antibiotic resistance is one of the major threats to public health today. To address this problem requires an urgent comprehensive approach. Strategic and multitargeted combination therapy has been increasingly used clinically to treat bacterial infections. The hollow-fibre infection model (HFIM) is a well-controlled in vitro bioreactor system that is increasingly being used in the assessment of resistance emergence with monotherapies and combination antibiotic therapies. In this study, the HFIM was evaluated as a reliable in vitro method to quantitatively and reproducibly analyse the emergence of antibiotic resistance using ampicillin, fosfomycin and ciprofloxacin and their simultaneous combinations against Escherichia coli CFT073, a clinical uropathogenic strain. Bacteria were exposed to clinically relevant pharmacokinetic (PK) concentrations of the drugs for 10 days. Drug and bacterial samples were collected at different time points for PK analysis and to enumerate total and resistant bacterial populations, respectively. The results demonstrated that double or triple combinations significantly delayed the emergence of resistant E. coli CFT073 subpopulations. These findings suggest that strategic combinations of antimicrobials may play a role in controlling the emergence of resistance during treatment. Further animal and human trials will be needed to confirm this and to ensure that there is no adverse impact on the host microbiome or unexpected toxicity. The HFIM system could potentially be used to identify clinically relevant combination dosing regimens for use in a clinical trial evaluating the appearance of resistance to antibacterial drugs.


Asunto(s)
Antibacterianos/farmacología , Antibacterianos/farmacocinética , Reactores Biológicos/microbiología , Farmacorresistencia Bacteriana Múltiple/genética , Escherichia coli/efectos de los fármacos , Ampicilina/farmacocinética , Ampicilina/farmacología , Ciprofloxacina/farmacocinética , Ciprofloxacina/farmacología , Combinación de Medicamentos , Escherichia coli/genética , Fosfomicina/farmacocinética , Fosfomicina/farmacología , Humanos , Pruebas de Sensibilidad Microbiana
13.
Toxicol Appl Pharmacol ; 372: 57-69, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30914376

RESUMEN

Cytokine release syndrome (CRS) is a serious and potentially life-threatening complication typically associated with biological drug products. Pre-clinical testing in vitro and in vivo studies using non-human primates had failed to reliably predict CRS. To determine if bone marrow-thymus-liver (BLT) humanized mice with a fully engrafted human immune system or a CD34-humanized mouse model could predict CRS, we tested an anti-CD28 monoclonal antibody (mAb) similar to TGN1412. This TGN1412 analogue (TGN1412A) was initially tested in vitro and found to produce significant dose-dependent increases in cytokine production. For in vivo studies, adalimumab, an anti-tumor necrosis factor-alpha antibody known not to cause CRS, served as a negative control. We evaluated immune cell activation and cytokine expression in three independent experiments. In BLT humanized mice, significant increases in levels of human cytokines were identified in animals treated with anti-CD28 mAb. As expected, CD28+ cell detection was strongly reduced in the anti-CD28 treated group. Increased T cell activation was also observed. The control group did not show reductions in CD28+ T-cells and did not experience increased cytokine levels. Responses by CD34-humanized mice showed no significant differences between adalimumab and anti-CD28 treatment at doses used to test BLT-humanized mice. These results suggest that the TGN1412A produces similar results in vitro to the original TGN1412 monoclonal antibody. The BLT immune humanized mice but not the CD34 humanized mice produce both robust and specific cytokine responses and may represent a pre-clinical model to identify CRS.


Asunto(s)
Anticuerpos Monoclonales Humanizados/toxicidad , Antígenos CD28/antagonistas & inhibidores , Síndrome de Liberación de Citoquinas/etiología , Citocinas/sangre , Linfocitos T/efectos de los fármacos , Animales , Antígenos CD34/inmunología , Antígenos CD28/sangre , Antígenos CD28/inmunología , Células Cultivadas , Síndrome de Liberación de Citoquinas/sangre , Síndrome de Liberación de Citoquinas/inmunología , Citocinas/inmunología , Femenino , Trasplante de Células Madre Hematopoyéticas , Humanos , Trasplante de Hígado , Ratones Endogámicos NOD , Ratones SCID , Medición de Riesgo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Timo/embriología , Timo/trasplante
14.
Toxicol Sci ; 169(1): 194-208, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30850839

RESUMEN

Checkpoint inhibitors represent a new class of therapeutics in the treatment of cancer that has demonstrated remarkable clinical effectiveness. However, some patients have experienced serious immune-mediated adverse effects including pneumonitis, hepatitis, colitis, nephritis, dermatitis, encephalitis, and adrenal or pituitary insufficiency. These adverse events were not predicted by nonclinical studies. To determine if bone marrow-liver-thymus (BLT) immune humanized mice could demonstrate these adverse effects, we studied the effect of nivolumab on 2 strains of BLT-humanized mice, NOD.Cg-Prkdcscid Il2rgtm1Sug/JicTac (NOG) and NOD.Cg-Prkdcscid Il2rgtm1Sug Tg(SV40/HTLV-IL3, CSF2)10-7Jic/JicTac (NOG-EXL). Mice were treated with 2.5, 5.0, or 10.0 mg/kg nivolumab or saline twice weekly for 28 days. BLT-NOG mice had significantly reduced survival compared with BLT-NOG-EXL mice. In spite of the difference in survival, both BLT-humanized strains showed adverse reactions similar to those reported in humans, including pneumonitis and hepatitis, with nephritis, dermatitis and adrenalitis also noted in some individuals. Additional histopathologic findings included pancreatic atrophy, myositis, and osteomyelitis in some animals. T-cell activation increased with concomitant loss of PD-1 detection. These findings show that BLT immune humanized mice can demonstrate immune-mediated adverse effects of antiPD1 therapy, and may represent a model that can be used to better understand toxicity of this class of drugs.


Asunto(s)
Antineoplásicos Inmunológicos/toxicidad , Sistema Inmunológico/efectos de los fármacos , Activación de Linfocitos/efectos de los fármacos , Nivolumab/toxicidad , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Linfocitos T/efectos de los fármacos , Animales , Trasplante de Médula Ósea , Femenino , Genotipo , Humanos , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Sistema Inmunológico/patología , Trasplante de Hígado , Ratones Endogámicos NOD , Ratones Transgénicos , Receptor de Muerte Celular Programada 1/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Transducción de Señal , Especificidad de la Especie , Linfocitos T/inmunología , Linfocitos T/metabolismo , Linfocitos T/patología , Timo/inmunología , Timo/trasplante
15.
Nanomedicine (Lond) ; 12(17): 2097-2111, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28805153

RESUMEN

AIM: The goal of this study was to determine whether bacterial clearance in a rodent model would be impaired upon exposure to gold, silver or silica nanoparticles (NPs). MATERIALS & METHODS: Mice received weekly injections of NPs followed by a challenge of Listeria monocytogenes (LM). On days 3 and 10 after LM injections, the animals were sacrificed and their tissues were collected for elemental analysis, electron microscopy and LM count determination. RESULTS: The untreated and NP-treated animals cleared LM at the same rate suggesting that bioaccumulation of NPs did not increase the animals' susceptibility to bacterial infection. CONCLUSION: The data from this study indicate that the bioaccumulation of NPs does not significantly affect the ability to react to a bacterial challenge.


Asunto(s)
Listeria monocytogenes/efectos de los fármacos , Listeriosis/tratamiento farmacológico , Nanopartículas/química , Administración Intravenosa , Animales , Supervivencia Celular , Femenino , Oro/química , Humanos , Listeriosis/metabolismo , Listeriosis/microbiología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Tamaño de la Partícula , Células RAW 264.7 , Especies Reactivas de Oxígeno/metabolismo , Dióxido de Silicio/química , Plata/química , Propiedades de Superficie , Distribución Tisular
16.
Part Fibre Toxicol ; 14(1): 25, 2017 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-28716104

RESUMEN

BACKGROUND: As nanoparticles (NPs) become more prevalent in the pharmaceutical industry, questions have arisen from both industry and regulatory stakeholders about the long term effects of these materials. This study was designed to evaluate whether gold (10 nm), silver (50 nm), or silica (10 nm) nanoparticles administered intravenously to mice for up to 8 weeks at doses known to be sub-toxic (non-toxic at single acute or repeat dosing levels) and clinically relevant could produce significant bioaccumulation in liver and spleen macrophages. RESULTS: Repeated dosing with gold, silver, and silica nanoparticles did not saturate bioaccumulation in liver or spleen macrophages. While no toxicity was observed with gold and silver nanoparticles throughout the 8 week experiment, some effects including histopathological and serum chemistry changes were observed with silica nanoparticles starting at week 3. No major changes in the splenocyte population were observed during the study for any of the nanoparticles tested. CONCLUSIONS: The clinical impact of these changes is unclear but suggests that the mononuclear phagocytic system is able to handle repeated doses of nanoparticles.


Asunto(s)
Oro/toxicidad , Hígado/efectos de los fármacos , Macrófagos/efectos de los fármacos , Nanopartículas , Dióxido de Silicio/toxicidad , Plata/toxicidad , Bazo/efectos de los fármacos , Animales , Biomarcadores/sangre , Femenino , Oro/administración & dosificación , Oro/metabolismo , Inyecciones Intravenosas , Hígado/metabolismo , Hígado/patología , Macrófagos/metabolismo , Macrófagos/patología , Nanopartículas del Metal , Ratones Endogámicos BALB C , Medición de Riesgo , Dióxido de Silicio/administración & dosificación , Dióxido de Silicio/metabolismo , Plata/administración & dosificación , Plata/metabolismo , Bazo/metabolismo , Bazo/patología , Factores de Tiempo , Distribución Tisular
17.
Toxicol Appl Pharmacol ; 287(3): 246-52, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26079829

RESUMEN

The erythropoietin analog peginesatide was withdrawn from marketing due to unexpected severe anaphylactic reactions associated with administration of the multi-use formulation. The adverse events occurred rapidly following the first ever administration of the drug with most affected patients becoming symptomatic in less than 30min. This is most consistent with an anaphylactoid reaction due to direct activation of mast cells. Laboratory evaluation was undertaken using rat peritoneal mast cells as the model system. Initial studies showed that high concentrations of the formulated drug as well as formulated vehicle alone could cause mast cell degranulation as measured by histamine release. The purified active drug was not able to cause histamine release whereas the vehicle filtrate and lab created drug vehicle were equally potent at causing histamine release. Individual formulations of vehicle leaving one component out showed that histamine release was due to phenol. Dose response studies with phenol showed a very sharp dose response curve that was similar in three buffer systems. Cellular analysis by flow cytometry showed that the histamine release was not due to cell death, and that changes in light scatter parameters consistent with degranulation were rapidly observed. Limited testing with primary human mast cells showed a similar dose response of histamine release with exposure to phenol. To provide in vivo confirmation, rats were injected with vehicle formulated with various concentrations of phenol via a jugular vein cannula. Significant release of histamine was detected in blood samples taken 2min after dosing at the highest concentrations tested.


Asunto(s)
Degranulación de la Célula/efectos de los fármacos , Excipientes/toxicidad , Hematínicos/toxicidad , Histamina/metabolismo , Mastocitos/efectos de los fármacos , Péptidos/toxicidad , Fenol/toxicidad , Animales , Células Cultivadas , Química Farmacéutica , Relación Dosis-Respuesta a Droga , Excipientes/administración & dosificación , Excipientes/química , Femenino , Hematínicos/química , Histamina/sangre , Humanos , Inyecciones Intravenosas , Mastocitos/metabolismo , Ratones Endogámicos NOD , Péptidos/química , Fenol/administración & dosificación , Fenol/química , Cultivo Primario de Células , Ratas Sprague-Dawley , Medición de Riesgo , Factores de Tiempo
18.
Toxicol Pathol ; 43(7): 935-44, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25717082

RESUMEN

Drug-induced vascular injury (DIVI) is a recurrent challenge in the development of novel pharmaceutical agents. In recent years, DIVI has been occasionally observed in nonhuman primates given RNA-targeting therapeutics such as antisense oligonucleotide therapies (ASOs) during chronic toxicity studies. While DIVI in laboratory animal species has been well characterized for vasoactive small molecules, and immune-mediated responses against large molecule biotherapeutics have been well described, there is little published information regarding DIVI induced by ASOs to date. Preclinical DIVI findings in monkeys have caused considerable delays in development of promising new ASO therapies, because of the uncertainty about whether DIVI in preclinical studies is predictive of effects in humans, and the lack of robust biomarkers of DIVI. This review of DIVI discusses clinical and microscopic features of vasculitis in monkeys, their pathogenic mechanisms, and points to consider for the toxicologist and pathologist when confronted with ASO-related DIVI. Relevant examples of regulatory feedback are included to provide insight into risk assessment of ASO therapies.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Oligonucleótidos Antisentido/efectos adversos , Lesiones del Sistema Vascular/inducido químicamente , Animales , Modelos Animales de Enfermedad , Humanos
19.
Toxicol Pathol ; 43(7): 915-34, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25722122

RESUMEN

Drug-induced vascular injury (DIVI) is a recurrent challenge in the development of novel pharmaceutical agents. Although DIVI in laboratory animal species has been well characterized for vasoactive small molecules, there is little available information regarding DIVI associated with biotherapeutics such as peptides/proteins or antibodies. Because of the uncertainty about whether DIVI in preclinical studies is predictive of effects in humans and the lack of robust biomarkers of DIVI, preclinical DIVI findings can cause considerable delays in or even halt development of promising new drugs. This review discusses standard terminology, characteristics, and mechanisms of DIVI associated with biotherapeutics. Guidance and points to consider for the toxicologist and pathologist facing preclinical cases of biotherapeutic-related DIVI are outlined, and examples of regulatory feedback for each of the mechanistic types of DIVI are included to provide insight into risk assessment.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Lesiones del Sistema Vascular/inducido químicamente , Animales , Modelos Animales de Enfermedad , Humanos
20.
J Pharm Biomed Anal ; 102: 494-9, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25459949

RESUMEN

Histamine is an important biogenic amine involved in regulating numerous physiological and pathophysiological processes in humans and animals. To date, there have been very few studies focused on developing and validating sensitive liquid-chromatography-tandem mass spectrometric (LC-MS/MS) assays capable of quantitative trace level histamine analysis in biological matrices. In the present study, a rapid and sensitive LC-MS/MS assay, amenable to high throughput analysis was developed and validated to characterize in vitro and in vivo histamine release. The LC-MS/MS procedure incorporating deuterium labeled internal standards provides rapid resolution of histamine with excellent sensitivity, precision, and accuracy. Histamine eluted at 1.5 min and was well separated from endogenous plasma peaks. The total run time of the assay was 8.0 min. A linear (r(2) ≥ 0.99) instrument response over the entire concentration range of 1.0-1000 ng/mL was observed. Excellent accuracy (error ± 3.4%) and precision (CV ± 10%) of the assay was demonstrated, with the lower limit of quantitation (LLOQ) at 15.6 ng/mL. The validated LC-MS/MS assay was applied to determine histamine release in both in vitro and in vivo models. Peritoneal mast cells treated with prototypical degranulating agents (Compound 48/80 and Teicoplanin) showed that the two chemicals caused approximately 40% histamine release. In rats, using this assay, basal histamine plasma levels were typically under 100 ng/mL. Treatment with an agent suspected of causing anaphylactic type reactions resulted in plasma histamine levels to increase above 3000 ng/mL. The LC-MS/MS assay presented in this study can be applied to further characterize the physiological and pathophysiological role of histamine release in complex in vitro and in vivo models. Importantly, the LC-MS/MS assay may be useful in assessing active pharmaceutical ingredient-mediated degranulation and anaphylaxis as part of either a pre-market or a post-market assessment of drug products.


Asunto(s)
Liberación de Histamina , Histamina/análisis , Espectrometría de Masas en Tándem/normas , Animales , Cromatografía Liquida/métodos , Cromatografía Liquida/normas , Femenino , Histamina/sangre , Liberación de Histamina/fisiología , Ratas , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...