Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Atherosclerosis ; 391: 117492, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38461759

RESUMEN

BACKGROUND AND AIMS: Obesity increases the risk for abdominal aortic aneurysms (AAA) in humans and enhances angiotensin II (AngII)-induced AAA formation in C57BL/6 mice. We reported that deficiency of Serum Amyloid A (SAA) significantly reduces AngII-induced inflammation and AAA in both hyperlipidemic apoE-deficient and obese C57BL/6 mice. The aim of this study is to investigate whether SAA plays a role in the progression of early AAA in obese C57BL/6 mice. METHODS: Male C57BL/6J mice were fed a high-fat diet (60% kcal as fat) throughout the study. After 4 months of diet, the mice were infused with AngII until the end of the study. Mice with at least a 25% increase in the luminal diameter of the abdominal aorta after 4 weeks of AngII infusion were stratified into 2 groups. The first group received a control antisense oligonucleotide (Ctr ASO), and the second group received ASO that suppresses SAA (SAA-ASO) until the end of the study. RESULTS: Plasma SAA levels were significantly reduced by the SAA ASO treatment. While mice that received the control ASO had continued aortic dilation throughout the AngII infusion periods, the mice that received SAA-ASO had a significant reduction in the progression of aortic dilation, which was associated with significant reductions in matrix metalloprotease activities, decreased macrophage infiltration and decreased elastin breaks in the abdominal aortas. CONCLUSIONS: We demonstrate for the first time that suppression of SAA protects obese C57BL/6 mice from the progression of AngII-induced AAA. Suppression of SAA may be a therapeutic approach to limit AAA progression.


Asunto(s)
Angiotensina II , Aneurisma de la Aorta Abdominal , Humanos , Masculino , Animales , Ratones , Angiotensina II/farmacología , Proteína Amiloide A Sérica/genética , Oligonucleótidos Antisentido/uso terapéutico , Ratones Endogámicos C57BL , Aneurisma de la Aorta Abdominal/inducido químicamente , Aneurisma de la Aorta Abdominal/genética , Aneurisma de la Aorta Abdominal/prevención & control , Aorta Abdominal , Obesidad , Modelos Animales de Enfermedad , Ratones Noqueados , Apolipoproteínas E
2.
Int J Mol Sci ; 24(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38139330

RESUMEN

Serum amyloid A (SAA) is a family of proteins, the plasma levels of which may increase >1000-fold in acute inflammatory states. We investigated the role of SAA in sepsis using mice deficient in all three acute-phase SAA isoforms (SAA-TKO). SAA deficiency significantly increased mortality rates in the three experimental sepsis mouse models: cecal ligation and puncture (CLP), cecal slurry (CS) injection, and lipopolysaccharide (LPS) treatments. SAA-TKO mice had exacerbated lung pathology compared to wild-type (WT) mice after CLP. A bulk RNA sequencing performed on lung tissues excised 24 h after CLP indicated significant enrichment in the expression of genes associated with chemokine production, chemokine and cytokine-mediated signaling, neutrophil chemotaxis, and neutrophil migration in SAA-TKO compared to WT mice. Consistently, myeloperoxidase activity and neutrophil counts were significantly increased in the lungs of septic SAA-TKO mice compared to WT mice. The in vitro treatment of HL-60, neutrophil-like cells, with SAA or SAA bound to a high-density lipoprotein (SAA-HDL), significantly decreased cellular transmigration through laminin-coated membranes compared to untreated cells. Thus, SAA potentially prevents neutrophil transmigration into injured lungs, thus reducing exacerbated tissue injury and mortality. In conclusion, we demonstrate for the first time that endogenous SAA plays a protective role in sepsis, including ameliorating lung injury.


Asunto(s)
Lesión Pulmonar , Sepsis , Animales , Ratones , Lesión Pulmonar/patología , Proteína Amiloide A Sérica/genética , Sepsis/patología , Pulmón/patología , Quimiocinas , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
3.
bioRxiv ; 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37662383

RESUMEN

OBJECTIVE: Obesity increases the risk for abdominal aortic aneurysms (AAA) in humans and enhances angiotensin II (AngII)-induced AAA formation in C57BL/6 mice. Obesity is also associated with increases in serum amyloid A (SAA). We previously reported that deficiency of SAA significantly reduces AngII-induced inflammation and AAA in both hyperlipidemic apoE-deficient and obese C57BL/6 mice. In this study, we investigated whether SAA plays a role in the progression of early AAA in obese C57BL/6 mice. APPROACH AND RESULTS: Male C57BL/6J mice were fed a high-fat diet (60% kcal as fat) throughout the study. After 4 months of diet, the mice were infused with angiotensin II (AngII) until the end of the study. Mice with at least a 25% increase in the luminal diameter of the abdominal aorta after 4 weeks of AngII infusion were stratified into 2 groups. The first group received a control antisense oligonucleotide (Ctr ASO), and the second group received ASO that suppresses SAA (SAA-ASO) until the end of the study. Plasma SAA levels were significantly reduced by the SAA ASO treatment. While mice that received the control ASO had continued aortic dilation throughout the AngII infusion periods, the mice that received SAA-ASO had a significant reduction in the progression of aortic dilation, which was associated with significant reductions in matrix metalloprotease activities, decreased macrophage infiltration and decreased elastin breaks in the abdominal aortas. CONCLUSION: We demonstrate for the first time that suppression of SAA protects obese C57BL/6 mice from the progression of AngII-induced AAA. Suppression of SAA may be a therapeutic approach to limit AAA progression.

4.
J Lipid Res ; 64(5): 100365, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37004910

RESUMEN

Serum amyloid A (SAA) is predictive of CVD in humans and causes atherosclerosis in mice. SAA has many proatherogenic effects in vitro. However, HDL, the major carrier of SAA in the circulation, masks these effects. The remodeling of HDL by cholesteryl ester transfer protein (CETP) liberates SAA restoring its proinflammatory activity. Here, we investigated whether deficiency of SAA suppresses the previously described proatherogenic effect of CETP. ApoE-/- mice and apoE-/- mice deficient in the three acute-phase isoforms of SAA (SAA1.1, SAA2.1, and SAA3; "apoE-/- SAA-TKO") with and without adeno-associated virus-mediated expression of CETP were studied. There was no effect of CETP expression or SAA genotype on plasma lipids or inflammatory markers. Atherosclerotic lesion area in the aortic arch of apoE-/- mice was 5.9 ± 1.2%; CETP expression significantly increased atherosclerosis in apoE-/- mice (13.1 ± 2.2%). However, atherosclerotic lesion area in the aortic arch of apoE-/- SAA-TKO mice (5.1 ± 1.1%) was not significantly increased by CETP expression (6.2 ± 0.9%). The increased atherosclerosis in apoE-/- mice expressing CETP was associated with markedly increased SAA immunostaining in aortic root sections. Thus, SAA augments the atherogenic effects of CETP, which suggests that inhibiting CETP may be of particular benefit in patients with high SAA.


Asunto(s)
Aterosclerosis , Proteínas de Transferencia de Ésteres de Colesterol , Humanos , Ratones , Animales , Proteínas de Transferencia de Ésteres de Colesterol/genética , Proteína Amiloide A Sérica/metabolismo , Aterosclerosis/metabolismo , Apolipoproteínas E/metabolismo , Aorta/metabolismo
5.
PLoS One ; 17(4): e0266688, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35436297

RESUMEN

Several studies in the past have reported positive correlations between circulating Serum amyloid A (SAA) levels and obesity. However, based on limited number of studies involving appropriate mouse models, the role of SAA in the development of obesity and obesity-related metabolic consequences has not been established. Accordingly, herein, we have examined the role of SAA in the development of obesity and its associated metabolic complications in vivo using mice deficient for all three inducible forms of SAA: SAA1.1, SAA2.1 and SAA3 (TKO). Male and female mice were rendered obese by feeding a high fat, high sucrose diet with added cholesterol (HFHSC) and control mice were fed rodent chow diet. Here, we show that the deletion of SAA does not affect diet-induced obesity, hepatic lipid metabolism or adipose tissue inflammation. However, there was a modest effect on glucose metabolism. The results of this study confirm previous findings that SAA levels are elevated in adipose tissues as well as in the circulation in diet-induced obese mice. However, the three acute phase SAAs do not play a causative role in the development of obesity or obesity-associated adipose tissue inflammation and dyslipidemia.


Asunto(s)
Proteína Amiloide A Sérica , Sacarosa , Animales , Colesterol , Dieta Alta en Grasa/efectos adversos , Femenino , Inflamación/complicaciones , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/complicaciones , Proteína Amiloide A Sérica/metabolismo
6.
Arterioscler Thromb Vasc Biol ; 42(5): 632-643, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35344382

RESUMEN

BACKGROUND: Obesity increases the risk for human abdominal aortic aneurysms (AAAs) and enhances Ang II (angiotensin II)-induced AAA formation in C57BL/6J mice. Obesity is also associated with increases in perivascular fat that expresses proinflammatory markers including SAA (serum amyloid A). We previously reported that deficiency of SAA significantly reduces Ang II-induced inflammation and AAA in hyperlipidemic apoE-deficient mice. In this study. we investigated whether adipose tissue-derived SAA plays a role in Ang II-induced AAA in obese C57BL/6J mice. METHODS: The development of AAA was compared between male C57BL/6J mice (wild type), C57BL/6J mice lacking SAA1.1, SAA2.1, and SAA3 (TKO); and TKO mice harboring a doxycycline-inducible, adipocyte-specific SAA1.1 transgene (TKO-Tgfat; SAA expressed only in fat). All mice were fed an obesogenic diet and doxycycline to induce SAA transgene expression and infused with Ang II to induce AAA. RESULTS: In response to Ang II infusion, SAA expression was significantly increased in perivascular fat of obese C57BL/6J mice. Maximal luminal diameters of the abdominal aorta were determined by ultrasound before and after Ang II infusion, which indicated a significant increase in aortic luminal diameters in wild type and TKO-TGfat mice but not in TKO mice. Adipocyte-specific SAA expression was associated with MMP (matrix metalloproteinase) activity and macrophage infiltration in abdominal aortas of Ang II-infused obese mice. CONCLUSIONS: We demonstrate for the first time that SAA deficiency protects obese C57BL/6J mice from Ang II-induced AAA. SAA expression only in adipocytes is sufficient to cause AAA in obese mice infused with Ang II.


Asunto(s)
Angiotensina II , Aneurisma de la Aorta Abdominal , Adipocitos/metabolismo , Angiotensina II/farmacología , Animales , Aneurisma de la Aorta Abdominal/inducido químicamente , Aneurisma de la Aorta Abdominal/genética , Apolipoproteínas E/genética , Modelos Animales de Enfermedad , Doxiciclina/efectos adversos , Masculino , Metaloproteinasas de la Matriz , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Obesidad/complicaciones , Proteína Amiloide A Sérica/genética , Proteína Amiloide A Sérica/metabolismo
7.
Curr Atheroscler Rep ; 24(1): 73, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35132572
8.
J Vasc Surg ; 75(4): 1211-1222.e1, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34695550

RESUMEN

OBJECTIVE: Abdominal aortic aneurysm (AAA) is a common progressive disease and a significant cause of morbidity and mortality. Prior investigations have shown that diabetes mellitus (DM) may be relatively protective of AAA incidence and growth. The Non-invasive Treatment of Aortic Aneurysm Clinical Trial (N-TA3CT) is a contemporary study of small AAA growth that provides a unique opportunity to validate and explore the effect of DM on AAA. Confirming the effect of DM on AAA growth in this study may present opportunities to explore for clues to potential biologic mechanisms as well as inform current patient management. METHODS: This is a secondary analysis examining the association of diabetes and aneurysm growth within N-TA3CT: a placebo-controlled multicenter trial of doxycycline in 261 patients with AAA maximum transverse diameters (MTDs) between 3.5 and 5 cm. The primary outcome is the change in the MTD from baseline as determined by computed tomography (CT) scans obtained during the trial. Secondary outcome is the growth pattern of the AAA. Baseline characteristics and growth patterns were assessed with t tests (continuous) or χ2 tests (categorical). Unadjusted and adjusted longitudinal analyses were performed with a repeated measures linear mixed model to compare AAA growth rates between patients with and without diabetes. RESULTS: Of 261 patients, 250 subjects had sufficient imaging and were included in this study. There were 56 patients (22.4%) with diabetes and 194 (77.6%) without. Diabetes was associated with higher body mass index and increased rates of hypercholesterolemia and coronary artery disease (P < .05). Diabetes was also associated with increased frequency of treatment for atherosclerosis and hypertension including treatment with statin, angiotensin-converting enzyme inhibitor, angiotensin II receptor blocker, anti-platelet, and diuretic therapy (P < .05). Baseline MTD was not significantly different between those with (4.32 cm) and without DM (4.30 cm). Median growth rate for patients with diabetes was 0.12 cm/y (interquartile range, 0.07-0.22 cm/y) and 0.19 cm/y (interquartile range, 0.12-0.27 cm/y) in patients without DM, which was significantly different on unadjusted analysis (P < .0001). Diabetes remained significantly associated with AAA growth after adjustment for other relevant clinical factors (coef, -0.057; P < .0001). CONCLUSIONS: Patients with diabetes have more than a 35% reduction in the median growth rates of AAA despite more severe concomitant vascular comorbidities and similar initial sizes of aneurysms. This effect persists and remains robust after adjusted analysis; and slower growth rates may delay the time to reach repair threshold. Rapid growth (>0.5 cm/y) is infrequent in patients with DM.


Asunto(s)
Aneurisma de la Aorta Abdominal , Diabetes Mellitus , Hipertensión , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Aneurisma de la Aorta Abdominal/diagnóstico por imagen , Aneurisma de la Aorta Abdominal/tratamiento farmacológico , Aneurisma de la Aorta Abdominal/epidemiología , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/epidemiología , Humanos , Factores de Riesgo , Tomografía Computarizada por Rayos X
9.
Curr Atheroscler Rep ; 23(2): 7, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33447953

RESUMEN

PURPOSE OF REVIEW: Serum amyloid A (SAA) is a highly sensitive acute phase reactant that has been linked to a number of chronic inflammatory diseases. During a systemic inflammatory response, liver-derived SAA is primarily found on high-density lipoprotein (HDL). The purpose of this review is to discuss recent literature addressing the pathophysiological functions of SAA and the significance of its association with HDL. RECENT FINDINGS: Studies in gene-targeted mice establish that SAA contributes to atherosclerosis and some metastatic cancers. Accumulating evidence indicates that the lipidation state of SAA profoundly affects its bioactivities, with lipid-poor, but not HDL-associated, SAA capable of inducing inflammatory responses in vitro and in vivo. Factors that modulate the equilibrium between lipid-free and HDL-associated SAA have been identified. HDL may serve to limit SAA's bioactivities in vivo. Understanding the factors leading to the release of systemic SAA from HDL may provide insights into chronic disease mechanisms.


Asunto(s)
Aterosclerosis , Lipoproteínas HDL , Animales , Aterosclerosis/genética , Humanos , Hígado , Ratones , Proteína Amiloide A Sérica
10.
Arterioscler Thromb Vasc Biol ; 40(4): e78-e86, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32208998

RESUMEN

Aortic structure and function are controlled by the coordinated actions of different aortic cells and the extracellular matrix. Several pathways have been identified that control the aortic wall in a cell-type-specific manner and play diverse roles in various phases of aortic injury, repair, and remodeling. This complexity of signaling in the aortic wall poses challenges to the development of therapeutic strategies for treating aortic aneurysms and dissections. Here, in part II of this Recent Highlights series on aortic aneurysms and dissections, we will summarize recent studies published in Arteriosclerosis, Thrombosis, and Vascular Biology that have contributed to our knowledge of the signaling pathway-related mechanisms of aortic aneurysms and dissections.


Asunto(s)
Aneurisma de la Aorta/metabolismo , Disección Aórtica/metabolismo , Matriz Extracelular/metabolismo , Transducción de Señal , Disección Aórtica/tratamiento farmacológico , Aneurisma de la Aorta/tratamiento farmacológico , Humanos , Mutación , Receptores de Angiotensina/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
11.
Arterioscler Thromb Vasc Biol ; 40(3): e37-e46, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32101472

RESUMEN

The aortic wall is composed of highly dynamic cell populations and extracellular matrix. In response to changes in the biomechanical environment, aortic cells and extracellular matrix modulate their structure and functions to increase aortic wall strength and meet the hemodynamic demand. Compromise in the structural and functional integrity of aortic components leads to aortic degeneration, biomechanical failure, and the development of aortic aneurysms and dissections (AAD). A better understanding of the molecular pathogenesis of AAD will facilitate the development of effective medications to treat these conditions. Here, we summarize recent findings on AAD published in ATVB. In this issue, we focus on the dynamics of aortic cells and extracellular matrix in AAD; in the next issue, we will focus on the role of signaling pathways in AAD.


Asunto(s)
Aorta/patología , Aneurisma de la Aorta/patología , Disección Aórtica/patología , Matriz Extracelular/patología , Disección Aórtica/metabolismo , Disección Aórtica/fisiopatología , Animales , Aorta/metabolismo , Aorta/fisiopatología , Aneurisma de la Aorta/metabolismo , Aneurisma de la Aorta/fisiopatología , Dilatación Patológica , Células Endoteliales/metabolismo , Células Endoteliales/patología , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Hemodinámica , Humanos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Músculo Liso Vascular/fisiopatología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Remodelación Vascular
13.
J Lipid Res ; 61(3): 328-337, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31915139

RESUMEN

Liver-derived serum amyloid A (SAA) is present in plasma where it is mainly associated with HDL and from which it is cleared more rapidly than are the other major HDL-associated apolipoproteins. Although evidence suggests that lipid-free and HDL-associated forms of SAA have different activities, the pathways by which SAA associates and disassociates with HDL are poorly understood. In this study, we investigated SAA lipidation by hepatocytes and how this lipidation relates to the formation of nascent HDL particles. We also examined hepatocyte-mediated clearance of lipid-free and HDL-associated SAA. We prepared hepatocytes from mice injected with lipopolysaccharide or an SAA-expressing adenoviral vector. Alternatively, we incubated primary hepatocytes from SAA-deficient mice with purified SAA. We analyzed conditioned media to determine the lipidation status of endogenously produced and exogenously added SAA. Examining the migration of lipidated species, we found that SAA is lipidated and forms nascent particles that are distinct from apoA-I-containing particles and that apoA-I lipidation is unaltered when SAA is overexpressed or added to the cells, indicating that SAA is not incorporated into apoA-I-containing HDL during HDL biogenesis. Like apoA-I formation, generation of SAA-containing particles was dependent on ABCA1, but not on scavenger receptor class B type I. Hepatocytes degraded significantly more SAA than apoA-I. Taken together, our results indicate that SAA's lipidation and metabolism by the liver is independent of apoA-I and that SAA is not incorporated into HDL during HDL biogenesis.


Asunto(s)
Lipoproteínas HDL/metabolismo , Proteína Amiloide A Sérica/metabolismo , Animales , Apolipoproteína A-I/deficiencia , Apolipoproteína A-I/metabolismo , Hepatocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Amiloide A Sérica/deficiencia , Proteína Amiloide A Sérica/genética
14.
Nature ; 567(7747): 249-252, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30842658

RESUMEN

The liver is the most common site of metastatic disease1. Although this metastatic tropism may reflect the mechanical trapping of circulating tumour cells, liver metastasis is also dependent, at least in part, on the formation of a 'pro-metastatic' niche that supports the spread of tumour cells to the liver2,3. The mechanisms that direct the formation of this niche are poorly understood. Here we show that hepatocytes coordinate myeloid cell accumulation and fibrosis within the liver and, in doing so, increase the susceptibility of the liver to metastatic seeding and outgrowth. During early pancreatic tumorigenesis in mice, hepatocytes show activation of signal transducer and activator of transcription 3 (STAT3) signalling and increased production of serum amyloid A1 and A2 (referred to collectively as SAA). Overexpression of SAA by hepatocytes also occurs in patients with pancreatic and colorectal cancers that have metastasized to the liver, and many patients with locally advanced and metastatic disease show increases in circulating SAA. Activation of STAT3 in hepatocytes and the subsequent production of SAA depend on the release of interleukin 6 (IL-6) into the circulation by non-malignant cells. Genetic ablation or blockade of components of IL-6-STAT3-SAA signalling prevents the establishment of a pro-metastatic niche and inhibits liver metastasis. Our data identify an intercellular network underpinned by hepatocytes that forms the basis of a pro-metastatic niche in the liver, and identify new therapeutic targets.


Asunto(s)
Hepatocitos/patología , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/secundario , Hígado/patología , Metástasis de la Neoplasia , Neoplasias Pancreáticas/patología , Microambiente Tumoral , Animales , Carcinoma Ductal Pancreático/patología , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/secundario , Femenino , Interleucina-6/metabolismo , Masculino , Ratones , Factor de Transcripción STAT3/metabolismo , Proteína Amiloide A Sérica/metabolismo
15.
J Biol Chem ; 293(34): 13257-13269, 2018 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-29976759

RESUMEN

Serum amyloid A (SAA) is a high-density apolipoprotein whose plasma levels can increase more than 1000-fold during a severe acute-phase inflammatory response and are more modestly elevated in chronic inflammation. SAA is thought to play important roles in innate immunity, but its biological activities have not been completely delineated. We previously reported that SAA deficiency protects mice from developing abdominal aortic aneurysms (AAAs) induced by chronic angiotensin II (AngII) infusion. Here, we report that SAA is required for AngII-induced increases in interleukin-1ß (IL-1ß), a potent proinflammatory cytokine that is tightly controlled by the Nod-like receptor protein 3 (NLRP3) inflammasome and caspase-1 and has been implicated in both human and mouse AAAs. We determined that purified SAA stimulates IL-1ß secretion in murine J774 and bone marrow-derived macrophages through a mechanism that depends on NLRP3 expression and caspase-1 activity, but is independent of P2X7 nucleotide receptor (P2X7R) activation. Inhibiting reactive oxygen species (ROS) by N-acetyl-l-cysteine or mito-TEMPO and inhibiting activation of cathepsin B by CA-074 blocked SAA-mediated inflammasome activation and IL-1ß secretion. Moreover, inhibiting cellular potassium efflux with glyburide or increasing extracellular potassium also significantly reduced SAA-mediated IL-1ß secretion. Of note, incorporating SAA into high-density lipoprotein (HDL) prior to its use in cell treatments completely abolished its ability to stimulate ROS generation and inflammasome activation. These results provide detailed insights into SAA-mediated IL-1ß production and highlight HDL's role in regulating SAA's proinflammatory effects.


Asunto(s)
Inflamasomas/metabolismo , Inflamación/inmunología , Lipoproteínas HDL/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteína Amiloide A Sérica/metabolismo , Proteína Amiloide A Sérica/fisiología , Animales , Caspasa 1/metabolismo , Catepsina B/metabolismo , Células HEK293 , Humanos , Inflamación/metabolismo , Inflamación/patología , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína Amiloide A Sérica/genética , Transducción de Señal
16.
Arterioscler Thromb Vasc Biol ; 38(8): 1890-1900, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29976766

RESUMEN

Objective- SAA (serum amyloid A) is a family of acute-phase reactants that have proinflammatory and proatherogenic activities. SAA is more lipophilic than apoA-I (apolipoprotein A-I), and during an acute-phase response, <10% of plasma SAA is found lipid-free. In most reports, SAA is found exclusively associated with high-density lipoprotein; however, we and others have reported SAA on apoB (apolipoprotein B)-containing lipoproteins in both mice and humans. The goal of this study was to determine whether SAA is an exchangeable apolipoprotein. Approach and Results- Delipidated human SAA was incubated with SAA-free human lipoproteins; then, samples were reisolated by fast protein liquid chromatography, and SAA analyzed by ELISA and immunoblot. Both in vitro and in vivo, we show that SAA associates with any lipoprotein and does not remain in a lipid-free form. Although SAA is preferentially found on high-density lipoprotein, it can exchange between lipoproteins. In the presence of CETP (cholesterol ester transfer protein), there is greater exchange of SAA between lipoproteins. Subjects with diabetes mellitus, but not those with metabolic syndrome, showed altered SAA lipoprotein distribution postprandially. Proteoglycan-mediated lipoprotein retention is thought to be an underlying mechanism for atherosclerosis development. SAA has a proteoglycan-binding domain. Lipoproteins containing SAA had increased proteoglycan binding compared with SAA-free lipoproteins. Conclusions- Thus, SAA is an exchangeable apolipoprotein and increases apoB-containing lipoproteins' proteoglycan binding. We and others have previously reported the presence of SAA on low-density lipoprotein in individuals with obesity, diabetes mellitus, and metabolic syndrome. We propose that the presence of SAA on apoB-containing lipoproteins may contribute to cardiovascular disease development in these populations.


Asunto(s)
Apolipoproteínas/metabolismo , Proteína Amiloide A Sérica/metabolismo , Anciano , Animales , Apolipoproteína B-100/metabolismo , Apolipoproteínas/sangre , Proteínas de Transferencia de Ésteres de Colesterol/genética , Proteínas de Transferencia de Ésteres de Colesterol/metabolismo , Diabetes Mellitus/sangre , Femenino , Humanos , Lipoproteínas HDL/metabolismo , Masculino , Síndrome Metabólico/sangre , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Persona de Mediana Edad , Obesidad/sangre , Periodo Posprandial , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteoglicanos/metabolismo , Proteína Amiloide A Sérica/deficiencia , Proteína Amiloide A Sérica/genética
17.
J Lipid Res ; 59(2): 339-347, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29247043

RESUMEN

Serum amyloid A (SAA) is a family of acute-phase reactants. Plasma levels of human SAA1/SAA2 (mouse SAA1.1/2.1) can increase ≥1,000-fold during an acute-phase response. Mice, but not humans, express a third relatively understudied SAA isoform, SAA3. We investigated whether mouse SAA3 is an HDL-associated acute-phase SAA. Quantitative RT-PCR with isoform-specific primers indicated that SAA3 and SAA1.1/2.1 are induced similarly in livers (∼2,500-fold vs. ∼6,000-fold, respectively) and fat (∼400-fold vs. ∼100-fold, respectively) of lipopolysaccharide (LPS)-injected mice. In situ hybridization demonstrated that all three SAAs are produced by hepatocytes. All three SAA isoforms were detected in plasma of LPS-injected mice, although SAA3 levels were ∼20% of SAA1.1/2.1 levels. Fast protein LC analyses indicated that virtually all of SAA1.1/2.1 eluted with HDL, whereas ∼15% of SAA3 was lipid poor/free. After density gradient ultracentrifugation, isoelectric focusing demonstrated that ∼100% of plasma SAA1.1 was recovered in HDL compared with only ∼50% of SAA2.1 and ∼10% of SAA3. Thus, SAA3 appears to be more loosely associated with HDL, resulting in lipid-poor/free SAA3. We conclude that SAA3 is a major hepatic acute-phase SAA in mice that may produce systemic effects during inflammation.


Asunto(s)
Reacción de Fase Aguda/metabolismo , Proteína Amiloide A Sérica/metabolismo , Animales , Células Cultivadas , Lipopolisacáridos/farmacología , Lipoproteínas HDL/metabolismo , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Amiloide A Sérica/deficiencia , Proteína Amiloide A Sérica/genética
18.
Atherosclerosis ; 268: 32-35, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29175652

RESUMEN

BACKGROUND AND AIMS: Serum amyloid A (SAA) predicts cardiovascular events. Overexpression of SAA increases atherosclerosis development; however, deficiency of two of the murine acute phase isoforms, SAA1.1 and SAA2.1, has no effect on atherosclerosis. SAA3 is a pseudogene in humans, but is an expressed acute phase isoform in mice. The goal of this study was to determine if SAA3 affects atherosclerosis in mice. METHODS: ApoE-/- mice were used as the model for all studies. SAA3 was overexpressed by an adeno-associated virus or suppressed using an anti-sense oligonucleotide approach. RESULTS: Over-expression of SAA3 led to a 4-fold increase in atherosclerosis lesion area compared to control mice (p = 0.01). Suppression of SAA3 decreased atherosclerosis in mice genetically deficient in SAA1.1 and SAA2.1 (p < 0.0001). CONCLUSIONS: SAA3 augments atherosclerosis in mice. Our results resolve a previous paradox in the literature and support extensive epidemiological data that SAA is pro-atherogenic.


Asunto(s)
Aorta/metabolismo , Enfermedades de la Aorta/sangre , Aterosclerosis/sangre , Placa Aterosclerótica , Proteína Amiloide A Sérica/metabolismo , Animales , Aorta/patología , Enfermedades de la Aorta/diagnóstico , Enfermedades de la Aorta/patología , Enfermedades de la Aorta/prevención & control , Aterosclerosis/genética , Aterosclerosis/patología , Aterosclerosis/prevención & control , Modelos Animales de Enfermedad , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Proteína Amiloide A Sérica/deficiencia , Proteína Amiloide A Sérica/genética
19.
Endocrine ; 58(1): 47-58, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28825176

RESUMEN

PURPOSE: Group X (GX) and group V (GV) secretory phospholipase A2 (sPLA2) potently release arachidonic acid (AA) from the plasma membrane of intact cells. We previously demonstrated that GX sPLA2 negatively regulates glucose-stimulated insulin secretion (GSIS) by a prostaglandin E2 (PGE2)-dependent mechanism. In this study we investigated whether GV sPLA2 similarly regulates GSIS. METHODS: GSIS and pancreatic islet-size were assessed in wild-type (WT) and GV sPLA2-knock out (GV KO) mice. GSIS was also assessed ex vivo in isolated islets and in vitro using MIN6 pancreatic beta cell lines with or without GV sPLA2 overexpression or silencing. RESULTS: GSIS was significantly decreased in islets isolated from GV KO mice compared to WT mice and in MIN6 cells with siRNA-mediated GV sPLA2 suppression. MIN6 cells overexpressing GV sPLA2 (MIN6-GV) showed a significant increase in GSIS compared to control cells. Though the amount of AA released into the media by MIN6-GV cells was significantly higher, PGE2 production was not enhanced or cAMP content decreased compared to control MIN6 cells. Surprisingly, GV KO mice exhibited a significant increase in plasma insulin levels following i.p. injection of glucose compared to WT mice. This increase in GSIS in GV KO mice was associated with a significant increase in pancreatic islet size and number of proliferating cells in ß-islets compared to WT mice. CONCLUSIONS: Deficiency of GV sPLA2 results in diminished GSIS in isolated pancreatic beta-cells. However, the reduced GSIS in islets lacking GV sPLA2 appears to be compensated by increased islet mass in GV KO mice.


Asunto(s)
Fosfolipasas A2 Grupo V/metabolismo , Células Secretoras de Insulina/metabolismo , Animales , Ácido Araquidónico/metabolismo , Línea Celular , Proliferación Celular/efectos de los fármacos , Dinoprostona/biosíntesis , Glucosa/farmacología , Prueba de Tolerancia a la Glucosa , Fosfolipasas A2 Grupo V/genética , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/efectos de los fármacos , Islotes Pancreáticos/ultraestructura , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Complejo Silenciador Inducido por ARN
20.
Cell Stem Cell ; 19(1): 38-51, 2016 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-27292189

RESUMEN

The intestinal stem cell niche provides cues that actively maintain gut homeostasis. Dysregulation of these cues may compromise intestinal regeneration upon tissue insult and/or promote tumor growth. Here, we identify secreted phospholipases A2 (sPLA2s) as stem cell niche factors with context-dependent functions in the digestive tract. We show that group IIA sPLA2, a known genetic modifier of mouse intestinal tumorigenesis, is expressed by Paneth cells in the small intestine, while group X sPLA2 is expressed by Paneth/goblet-like cells in the colon. During homeostasis, group IIA/X sPLA2s inhibit Wnt signaling through intracellular activation of Yap1. However, upon inflammation they are secreted into the intestinal lumen, where they promote prostaglandin synthesis and Wnt signaling. Genetic ablation of both sPLA2s improves recovery from inflammation but increases colon cancer susceptibility due to release of their homeostatic Wnt-inhibitory role. This "trade-off" effect suggests sPLA2s have important functions as genetic modifiers of inflammation and colon cancer.


Asunto(s)
Fosfolipasas A2 Grupo II/metabolismo , Fosfolipasas A2 Grupo X/metabolismo , Homeostasis , Inflamación/patología , Neoplasias Intestinales/enzimología , Neoplasias Intestinales/patología , Intestinos/patología , Nicho de Células Madre , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular , Diferenciación Celular , Linaje de la Célula , Dinoprostona/biosíntesis , Inflamación/enzimología , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/patología , Neoplasias Intestinales/genética , Espacio Intracelular/metabolismo , Ratones Endogámicos C57BL , Organoides/metabolismo , Células de Paneth/enzimología , Células de Paneth/patología , Fosfoproteínas/metabolismo , Fosforilación , Células Madre/patología , Vía de Señalización Wnt , Proteínas Señalizadoras YAP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...