Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Breast Cancer Res ; 26(1): 76, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745208

RESUMEN

BACKGROUND: Breast cancer (BC) is the most commonly diagnosed cancer and the leading cause of cancer death among women globally. Despite advances, there is considerable variation in clinical outcomes for patients with non-luminal A tumors, classified as difficult-to-treat breast cancers (DTBC). This study aims to delineate the proteogenomic landscape of DTBC tumors compared to luminal A (LumA) tumors. METHODS: We retrospectively collected a total of 117 untreated primary breast tumor specimens, focusing on DTBC subtypes. Breast tumors were processed by laser microdissection (LMD) to enrich tumor cells. DNA, RNA, and protein were simultaneously extracted from each tumor preparation, followed by whole genome sequencing, paired-end RNA sequencing, global proteomics and phosphoproteomics. Differential feature analysis, pathway analysis and survival analysis were performed to better understand DTBC and investigate biomarkers. RESULTS: We observed distinct variations in gene mutations, structural variations, and chromosomal alterations between DTBC and LumA breast tumors. DTBC tumors predominantly had more mutations in TP53, PLXNB3, Zinc finger genes, and fewer mutations in SDC2, CDH1, PIK3CA, SVIL, and PTEN. Notably, Cytoband 1q21, which contains numerous cell proliferation-related genes, was significantly amplified in the DTBC tumors. LMD successfully minimized stromal components and increased RNA-protein concordance, as evidenced by stromal score comparisons and proteomic analysis. Distinct DTBC and LumA-enriched clusters were observed by proteomic and phosphoproteomic clustering analysis, some with survival differences. Phosphoproteomics identified two distinct phosphoproteomic profiles for high relapse-risk and low relapse-risk basal-like tumors, involving several genes known to be associated with breast cancer oncogenesis and progression, including KIAA1522, DCK, FOXO3, MYO9B, ARID1A, EPRS, ZC3HAV1, and RBM14. Lastly, an integrated pathway analysis of multi-omics data highlighted a robust enrichment of proliferation pathways in DTBC tumors. CONCLUSIONS: This study provides an integrated proteogenomic characterization of DTBC vs LumA with tumor cells enriched through laser microdissection. We identified many common features of DTBC tumors and the phosphopeptides that could serve as potential biomarkers for high/low relapse-risk basal-like BC and possibly guide treatment selections.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama , Proteogenómica , Humanos , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/mortalidad , Biomarcadores de Tumor/genética , Proteogenómica/métodos , Mutación , Captura por Microdisección con Láser , Persona de Mediana Edad , Estudios Retrospectivos , Anciano , Adulto , Proteómica/métodos , Pronóstico
2.
Sci Data ; 11(1): 328, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565538

RESUMEN

Human infections caused by viral pathogens trigger a complex gamut of host responses that limit disease, resolve infection, generate immunity, and contribute to severe disease or death. Here, we present experimental methods and multi-omics data capture approaches representing the global host response to infection generated from 45 individual experiments involving human viruses from the Orthomyxoviridae, Filoviridae, Flaviviridae, and Coronaviridae families. Analogous experimental designs were implemented across human or mouse host model systems, longitudinal samples were collected over defined time courses, and global multi-omics data (transcriptomics, proteomics, metabolomics, and lipidomics) were acquired by microarray, RNA sequencing, or mass spectrometry analyses. For comparison, we have included transcriptomics datasets from cells treated with type I and type II human interferon. Raw multi-omics data and metadata were deposited in public repositories, and we provide a central location linking the raw data with experimental metadata and ready-to-use, quality-controlled, statistically processed multi-omics datasets not previously available in any public repository. This compendium of infection-induced host response data for reuse will be useful for those endeavouring to understand viral disease pathophysiology and network biology.


Asunto(s)
Multiómica , Virosis , Virus , Animales , Humanos , Ratones , Perfilación de la Expresión Génica/métodos , Metabolómica , Proteómica/métodos , Virosis/inmunología , Interacciones Huésped-Patógeno
3.
PLoS One ; 19(3): e0293856, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38551935

RESUMEN

Light-sheet microscopy has made possible the 3D imaging of both fixed and live biological tissue, with samples as large as the entire mouse brain. However, segmentation and quantification of that data remains a time-consuming manual undertaking. Machine learning methods promise the possibility of automating this process. This study seeks to advance the performance of prior models through optimizing transfer learning. We fine-tuned the existing TrailMap model using expert-labeled data from noradrenergic axonal structures in the mouse brain. By changing the cross-entropy weights and using augmentation, we demonstrate a generally improved adjusted F1-score over using the originally trained TrailMap model within our test datasets.


Asunto(s)
Aprendizaje Profundo , Animales , Ratones , Microscopía , Axones , Aprendizaje Automático , Encéfalo/diagnóstico por imagen
4.
bioRxiv ; 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38405796

RESUMEN

Background: Biomarkers of early pathogenesis of type 1 diabetes (T1D) are crucial to enable effective prevention measures in at-risk populations before significant damage occurs to their insulin producing beta-cell mass. We recently introduced the concept of integrated parallel multi-omics and employed a novel data augmentation approach which identified promising candidate biomarkers from a small cohort of high-risk T1D subjects. We now validate selected biomarkers to generate a potential composite signature of T1D risk. Methods: Twelve candidate biomarkers, which were identified in the augmented data and selected based on their fold-change relative to healthy controls and cross-reference to proteomics data previously obtained in the expansive TEDDY and DAISY cohorts, were measured in the original samples by ELISA. Results: All 12 biomarkers had established connections with lipid/lipoprotein metabolism, immune function, inflammation, and diabetes, but only 7 were found to be markedly changed in the high-risk subjects compared to the healthy controls: ApoC1 and PON1 were reduced while CETP, CD36, FGFR1, IGHM, PCSK9, SOD1, and VCAM1 were elevated. Conclusions: Results further highlight the promise of our data augmentation approach in unmasking important patterns and pathologically significant features in parallel multi-omics datasets obtained from small sample cohorts to facilitate the identification of promising candidate T1D biomarkers for downstream validation. They also support the potential utility of a composite biomarker signature of T1D risk characterized by the changes in the above markers.

5.
iScience ; 27(2): 108769, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38303689

RESUMEN

Type 1 diabetes (T1D) is a chronic condition caused by autoimmune destruction of the insulin-producing pancreatic ß cells. While it is known that gene-environment interactions play a key role in triggering the autoimmune process leading to T1D, the pathogenic mechanism leading to the appearance of islet autoantibodies-biomarkers of autoimmunity-is poorly understood. Here we show that disruption of the complement system precedes the detection of islet autoantibodies and persists through disease onset. Our results suggest that children who exhibit islet autoimmunity and progress to clinical T1D have lower complement protein levels relative to those who do not progress within a similar time frame. Thus, the complement pathway, an understudied mechanistic and therapeutic target in T1D, merits increased attention for use as protein biomarkers of prediction and potentially prevention of T1D.

6.
Nat Chem Biol ; 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302607

RESUMEN

The leaf-cutter ant fungal garden ecosystem is a naturally evolved model system for efficient plant biomass degradation. Degradation processes mediated by the symbiotic fungus Leucoagaricus gongylophorus are difficult to characterize due to dynamic metabolisms and spatial complexity of the system. Herein, we performed microscale imaging across 12-µm-thick adjacent sections of Atta cephalotes fungal gardens and applied a metabolome-informed proteome imaging approach to map lignin degradation. This approach combines two spatial multiomics mass spectrometry modalities that enabled us to visualize colocalized metabolites and proteins across and through the fungal garden. Spatially profiled metabolites revealed an accumulation of lignin-related products, outlining morphologically unique lignin microhabitats. Metaproteomic analyses of these microhabitats revealed carbohydrate-degrading enzymes, indicating a prominent fungal role in lignocellulose decomposition. Integration of metabolome-informed proteome imaging data provides a comprehensive view of underlying biological pathways to inform our understanding of metabolic fungal pathways in plant matter degradation within the micrometer-scale environment.

7.
Cell Commun Signal ; 22(1): 141, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383396

RESUMEN

BACKGROUND: Lipids are regulators of insulitis and ß-cell death in type 1 diabetes development, but the underlying mechanisms are poorly understood. Here, we investigated how the islet lipid composition and downstream signaling regulate ß-cell death. METHODS: We performed lipidomics using three models of insulitis: human islets and EndoC-ßH1 ß cells treated with the pro-inflammatory cytokines interlukine-1ß and interferon-γ, and islets from pre-diabetic non-obese mice. We also performed mass spectrometry and fluorescence imaging to determine the localization of lipids and enzyme in islets. RNAi, apoptotic assay, and qPCR were performed to determine the role of a specific factor in lipid-mediated cytokine signaling. RESULTS: Across all three models, lipidomic analyses showed a consistent increase of lysophosphatidylcholine species and phosphatidylcholines with polyunsaturated fatty acids and a reduction of triacylglycerol species. Imaging assays showed that phosphatidylcholines with polyunsaturated fatty acids and their hydrolyzing enzyme phospholipase PLA2G6 are enriched in islets. In downstream signaling, omega-3 fatty acids reduce cytokine-induced ß-cell death by improving the expression of ADP-ribosylhydrolase ARH3. The mechanism involves omega-3 fatty acid-mediated reduction of the histone methylation polycomb complex PRC2 component Suz12, upregulating the expression of Arh3, which in turn decreases cell apoptosis. CONCLUSIONS: Our data provide insights into the change of lipidomics landscape in ß cells during insulitis and identify a protective mechanism by omega-3 fatty acids. Video Abstract.


Asunto(s)
Ácidos Grasos Omega-3 , Islotes Pancreáticos , N-Glicosil Hidrolasas , Ratones , Animales , Humanos , Islotes Pancreáticos/metabolismo , Muerte Celular , Citocinas/metabolismo , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Insaturados , Fosfatidilcolinas/metabolismo
8.
Diabetes Metab Res Rev ; 40(1): e3716, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37649398

RESUMEN

Type 1 diabetes is an autoimmune disease in which one's own immune system destroys insulin-secreting beta cells in the pancreas. This process results in life-long dependence on exogenous insulin for survival. Both genetic and environmental factors play a role in disease initiation, progression, and ultimate clinical diagnosis of type 1 diabetes. This review will provide background on the natural history of type 1 diabetes and the role of genetic factors involved in the complement system, as several recent studies have identified changes in levels of these proteins as the disease evolves from pre-clinical through to clinically apparent disease.


Asunto(s)
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Humanos , Diabetes Mellitus Tipo 1/genética , Páncreas/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo
9.
J Proteome Res ; 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38085827

RESUMEN

PMart is a web-based tool for reproducible quality control, exploratory data analysis, statistical analysis, and interactive visualization of 'omics data, based on the functionality of the pmartR R package. The newly improved user interface supports more 'omics data types, additional statistical capabilities, and enhanced options for creating downloadable graphics. PMart supports the analysis of label-free and isobaric-labeled (e.g., TMT, iTRAQ) proteomics, nuclear magnetic resonance (NMR) and mass-spectrometry (MS)-based metabolomics, MS-based lipidomics, and ribonucleic acid sequencing (RNA-seq) transcriptomics data. At the end of a PMart session, a report is available that summarizes the processing steps performed and includes the pmartR R package functions used to execute the data processing. In addition, built-in safeguards in the backend code prevent users from utilizing methods that are inappropriate based on omics data type. PMart is a user-friendly interface for conducting exploratory data analysis and statistical comparisons of omics data without programming.

10.
Metabolites ; 13(10)2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37887426

RESUMEN

Metabolomics provides a unique snapshot into the world of small molecules and the complex biological processes that govern the human, animal, plant, and environmental ecosystems encapsulated by the One Health modeling framework. However, this "molecular snapshot" is only as informative as the number of metabolites confidently identified within it. The spectral similarity (SS) score is traditionally used to identify compound(s) in mass spectrometry approaches to metabolomics, where spectra are matched to reference libraries of candidate spectra. Unfortunately, there is little consensus on which of the dozens of available SS metrics should be used. This lack of standard SS score creates analytic uncertainty and potentially leads to issues in reproducibility, especially as these data are integrated across other domains. In this work, we use metabolomic spectral similarity as a case study to showcase the challenges in consistency within just one piece of the One Health framework that must be addressed to enable data science approaches for One Health problems. Here, using a large cohort of datasets comprising both standard and complex datasets with expert-verified truth annotations, we evaluated the effectiveness of 66 similarity metrics to delineate between correct matches (true positives) and incorrect matches (true negatives). We additionally characterize the families of these metrics to make informed recommendations for their use. Our results indicate that specific families of metrics (the Inner Product, Correlative, and Intersection families of scores) tend to perform better than others, with no single similarity metric performing optimally for all queried spectra. This work and its findings provide an empirically-based resource for researchers to use in their selection of similarity metrics for GC-MS identification, increasing scientific reproducibility through taking steps towards standardizing identification workflows.

11.
Microb Cell Fact ; 22(1): 144, 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537586

RESUMEN

Efficient conversion of pentose sugars remains a significant barrier to the replacement of petroleum-derived chemicals with plant biomass-derived bioproducts. While the oleaginous yeast Rhodosporidium toruloides (also known as Rhodotorula toruloides) has a relatively robust native metabolism of pentose sugars compared to other wild yeasts, faster assimilation of those sugars will be required for industrial utilization of pentoses. To increase the rate of pentose assimilation in R. toruloides, we leveraged previously reported high-throughput fitness data to identify potential regulators of pentose catabolism. Two genes were selected for further investigation, a putative transcription factor (RTO4_12978, Pnt1) and a homolog of a glucose transceptor involved in carbon catabolite repression (RTO4_11990). Overexpression of Pnt1 increased the specific growth rate approximately twofold early in cultures on xylose and increased the maximum specific growth by 18% while decreasing accumulation of arabitol and xylitol in fast-growing cultures. Improved growth dynamics on xylose translated to a 120% increase in the overall rate of xylose conversion to fatty alcohols in batch culture. Proteomic analysis confirmed that Pnt1 is a major regulator of pentose catabolism in R. toruloides. Deletion of RTO4_11990 increased the growth rate on xylose, but did not relieve carbon catabolite repression in the presence of glucose. Carbon catabolite repression signaling networks remain poorly characterized in R. toruloides and likely comprise a different set of proteins than those mainly characterized in ascomycete fungi.


Asunto(s)
Proteómica , Xilosa , Xilosa/metabolismo , Pentosas , Glucosa/metabolismo
12.
Anal Chem ; 95(33): 12195-12199, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37551970

RESUMEN

Mass spectrometry is a powerful tool for identifying and analyzing biomolecules such as metabolites and lipids in complex biological samples. Liquid chromatography and gas chromatography mass spectrometry studies quite commonly involve large numbers of samples, which can require significant time for sample preparation and analyses. To accommodate such studies, the samples are commonly split into batches. Inevitably, variations in sample handling, temperature fluctuation, imprecise timing, column degradation, and other factors result in systematic errors or biases of the measured abundances between the batches. Numerous methods are available via R packages to assist with batch correction for omics data; however, since these methods were developed by different research teams, the algorithms are available in separate R packages, each with different data input and output formats. We introduce the malbacR package, which consolidates 11 common batch effect correction methods for omics data into one place so users can easily implement and compare the following: pareto scaling, power scaling, range scaling, ComBat, EigenMS, NOMIS, RUV-random, QC-RLSC, WaveICA2.0, TIGER, and SERRF. The malbacR package standardizes data input and output formats across these batch correction methods. The package works in conjunction with the pmartR package, allowing users to seamlessly include the batch effect correction in a pmartR workflow without needing any additional data manipulation.


Asunto(s)
Algoritmos , Proyectos de Investigación , Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Cromatografía de Gases y Espectrometría de Masas
13.
medRxiv ; 2023 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-37502972

RESUMEN

Type 1 diabetes (T1D) is a chronic condition caused by autoimmune destruction of the insulin-producing pancreatic ß-cells. While it is known that gene-environment interactions play a key role in triggering the autoimmune process leading to T1D, the pathogenic mechanism leading to the appearance of islet autoantibodies - biomarkers of autoimmunity - is poorly understood. Here we show that disruption of the complement system precedes the detection of islet autoantibodies and persists through disease onset. Our results suggest that children who exhibit islet autoimmunity and progress to clinical T1D have lower complement protein levels relative to those who do not progress within a similar timeframe. Thus, the complement pathway, an understudied mechanistic and therapeutic target in T1D, merits increased attention for use as protein biomarkers of prediction and potentially prevention of T1D.

14.
Cell Rep Med ; 4(7): 101093, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37390828

RESUMEN

Type 1 diabetes (T1D) results from autoimmune destruction of ß cells. Insufficient availability of biomarkers represents a significant gap in understanding the disease cause and progression. We conduct blinded, two-phase case-control plasma proteomics on the TEDDY study to identify biomarkers predictive of T1D development. Untargeted proteomics of 2,252 samples from 184 individuals identify 376 regulated proteins, showing alteration of complement, inflammatory signaling, and metabolic proteins even prior to autoimmunity onset. Extracellular matrix and antigen presentation proteins are differentially regulated in individuals who progress to T1D vs. those that remain in autoimmunity. Targeted proteomics measurements of 167 proteins in 6,426 samples from 990 individuals validate 83 biomarkers. A machine learning analysis predicts if individuals would remain in autoimmunity or develop T1D 6 months before autoantibody appearance, with areas under receiver operating characteristic curves of 0.871 and 0.918, respectively. Our study identifies and validates biomarkers, highlighting pathways affected during T1D development.


Asunto(s)
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Humanos , Diabetes Mellitus Tipo 1/diagnóstico , Autoinmunidad , Autoanticuerpos , Biomarcadores
15.
Sci Data ; 10(1): 323, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37237059

RESUMEN

The Network for Pancreatic Organ donors with Diabetes (nPOD) is the largest biorepository of human pancreata and associated immune organs from donors with type 1 diabetes (T1D), maturity-onset diabetes of the young (MODY), cystic fibrosis-related diabetes (CFRD), type 2 diabetes (T2D), gestational diabetes, islet autoantibody positivity (AAb+), and without diabetes. nPOD recovers, processes, analyzes, and distributes high-quality biospecimens, collected using optimized standard operating procedures, and associated de-identified data/metadata to researchers around the world. Herein describes the release of high-parameter genotyping data from this collection. 372 donors were genotyped using a custom precision medicine single nucleotide polymorphism (SNP) microarray. Data were technically validated using published algorithms to evaluate donor relatedness, ancestry, imputed HLA, and T1D genetic risk score. Additionally, 207 donors were assessed for rare known and novel coding region variants via whole exome sequencing (WES). These data are publicly-available to enable genotype-specific sample requests and the study of novel genotype:phenotype associations, aiding in the mission of nPOD to enhance understanding of diabetes pathogenesis to promote the development of novel therapies.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Donantes de Tejidos , Humanos , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Genómica , Páncreas
16.
Front Microbiol ; 14: 1105675, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36819069

RESUMEN

There is growing interest in a functional understanding of milk-associated microbiota as there is ample evidence that host-associated microbial communities play an active role in host health and phenotype. Mastitis, characterized by painful inflammation of the mammary gland, is prevalent among lactating humans and agricultural animals and is associated with significant clinical and economic consequences. The etiology of mastitis is complex and polymicrobial and correlative studies have indicated alterations in milk microbial community composition. Recent evidence is beginning to suggest that a causal relationship may exist between the milk microbiota and host phenotype in mastitis. Multi-omic approaches can be leveraged to gain a mechanistic, molecular level understanding of how the milk microbiome might modulate host physiology, thereby informing strategies to prevent and ameliorate mastitis. In this paper, we review existing studies that have utilized omics approaches to investigate the role of the milk microbiome in mastitis. We also summarize the strengths and challenges associated with the different omics techniques including metagenomics, metatranscriptomics, metaproteomics, metabolomics and lipidomics and provide perspective on the integration of multiple omics technologies for a better functional understanding of the milk microbiome.

17.
Front Artif Intell ; 6: 1098308, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36844425

RESUMEN

Biological systems function through complex interactions between various 'omics (biomolecules), and a more complete understanding of these systems is only possible through an integrated, multi-omic perspective. This has presented the need for the development of integration approaches that are able to capture the complex, often non-linear, interactions that define these biological systems and are adapted to the challenges of combining the heterogenous data across 'omic views. A principal challenge to multi-omic integration is missing data because all biomolecules are not measured in all samples. Due to either cost, instrument sensitivity, or other experimental factors, data for a biological sample may be missing for one or more 'omic techologies. Recent methodological developments in artificial intelligence and statistical learning have greatly facilitated the analyses of multi-omics data, however many of these techniques assume access to completely observed data. A subset of these methods incorporate mechanisms for handling partially observed samples, and these methods are the focus of this review. We describe recently developed approaches, noting their primary use cases and highlighting each method's approach to handling missing data. We additionally provide an overview of the more traditional missing data workflows and their limitations; and we discuss potential avenues for further developments as well as how the missing data issue and its current solutions may generalize beyond the multi-omics context.

18.
J Proteome Res ; 22(2): 570-576, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36622218

RESUMEN

The pmartR (https://github.com/pmartR/pmartR) package was designed for the quality control (QC) and analysis of mass spectrometry data, tailored to specific characteristics of proteomic (isobaric or labeled), metabolomic, and lipidomic data sets. Since its initial release, the tool has been expanded to address the needs of its growing userbase and now includes QC and statistics for nuclear magnetic resonance metabolomic data, and leverages the DESeq2, edgeR, and limma-voom R packages for transcriptomic data analyses. These improvements have made progress toward a unified omics processing pipeline for ease of reporting and streamlined statistical purposes. The package's statistics and visualization capabilities have also been expanded by adding support for paired data and by integrating pmartR with the trelliscopejs R package for the quick creation of trellis displays (https://github.com/hafen/trelliscopejs). Here, we present relevant examples of each of these enhancements to pmartR and highlight how each new feature benefits the omics community.


Asunto(s)
Proteómica , Programas Informáticos , Proteómica/métodos , Metabolómica/métodos , Perfilación de la Expresión Génica/métodos , Control de Calidad
19.
Metab Eng Commun ; 15: e00203, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36065328

RESUMEN

The global regulator LaeA controls secondary metabolism in diverse Aspergillus species. Here we explored its role in regulation of itaconic acid production in Aspergillus pseudoterreus. To understand its role in regulating metabolism, we deleted and overexpressed laeA, and assessed the transcriptome, proteome, and secreted metabolome prior to and during initiation of phosphate limitation induced itaconic acid production. We found that secondary metabolite clusters, including the itaconic acid biosynthetic gene cluster, are regulated by laeA and that laeA is required for high yield production of itaconic acid. Overexpression of LaeA improves itaconic acid yield at the expense of biomass by increasing the expression of key biosynthetic pathway enzymes and attenuating the expression of genes involved in phosphate acquisition and scavenging. Increased yield was observed in optimized conditions as well as conditions containing excess nutrients that may be present in inexpensive sugar containing feedstocks such as excess phosphate or complex nutrient sources. This suggests that global regulators of metabolism may be useful targets for engineering metabolic flux that is robust to environmental heterogeneity.

20.
J Clin Endocrinol Metab ; 107(8): 2329-2338, 2022 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-35468213

RESUMEN

CONTEXT: Biomarkers that can accurately predict risk of type 1 diabetes (T1D) in genetically predisposed children can facilitate interventions to delay or prevent the disease. OBJECTIVE: This work aimed to determine if a combination of genetic, immunologic, and metabolic features, measured at infancy, can be used to predict the likelihood that a child will develop T1D by age 6 years. METHODS: Newborns with human leukocyte antigen (HLA) typing were enrolled in the prospective birth cohort of The Environmental Determinants of Diabetes in the Young (TEDDY). TEDDY ascertained children in Finland, Germany, Sweden, and the United States. TEDDY children were either from the general population or from families with T1D with an HLA genotype associated with T1D specific to TEDDY eligibility criteria. From the TEDDY cohort there were 702 children will all data sources measured at ages 3, 6, and 9 months, 11.4% of whom progressed to T1D by age 6 years. The main outcome measure was a diagnosis of T1D as diagnosed by American Diabetes Association criteria. RESULTS: Machine learning-based feature selection yielded classifiers based on disparate demographic, immunologic, genetic, and metabolite features. The accuracy of the model using all available data evaluated by the area under a receiver operating characteristic curve is 0.84. Reducing to only 3- and 9-month measurements did not reduce the area under the curve significantly. Metabolomics had the largest value when evaluating the accuracy at a low false-positive rate. CONCLUSION: The metabolite features identified as important for progression to T1D by age 6 years point to altered sugar metabolism in infancy. Integrating this information with classic risk factors improves prediction of the progression to T1D in early childhood.


Asunto(s)
Diabetes Mellitus Tipo 1 , Islotes Pancreáticos , Autoanticuerpos/genética , Autoinmunidad/genética , Niño , Preescolar , Estudios de Cohortes , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/epidemiología , Diabetes Mellitus Tipo 1/genética , Predisposición Genética a la Enfermedad , Humanos , Lactante , Recién Nacido , Estudios Prospectivos , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...