Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell Rep Methods ; 2(8): 100269, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-36046619

RESUMEN

B and T cell receptor (immune) repertoires can represent an individual's immune history. While current repertoire analysis methods aim to discriminate between health and disease states, they are typically based on only a limited number of parameters. Here, we introduce immuneREF: a quantitative multidimensional measure of adaptive immune repertoire (and transcriptome) similarity that allows interpretation of immune repertoire variation by relying on both repertoire features and cross-referencing of simulated and experimental datasets. To quantify immune repertoire similarity landscapes across health and disease, we applied immuneREF to >2,400 datasets from individuals with varying immune states (healthy, [autoimmune] disease, and infection). We discovered, in contrast to the current paradigm, that blood-derived immune repertoires of healthy and diseased individuals are highly similar for certain immune states, suggesting that repertoire changes to immune perturbations are less pronounced than previously thought. In conclusion, immuneREF enables the population-wide study of adaptive immune response similarity across immune states.


Asunto(s)
Inmunidad Adaptativa , Enfermedades Autoinmunes , Humanos , Receptores de Antígenos de Linfocitos T/genética , Receptores Inmunológicos
2.
Cell ; 185(21): 4008-4022.e14, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36150393

RESUMEN

The continual evolution of SARS-CoV-2 and the emergence of variants that show resistance to vaccines and neutralizing antibodies threaten to prolong the COVID-19 pandemic. Selection and emergence of SARS-CoV-2 variants are driven in part by mutations within the viral spike protein and in particular the ACE2 receptor-binding domain (RBD), a primary target site for neutralizing antibodies. Here, we develop deep mutational learning (DML), a machine-learning-guided protein engineering technology, which is used to investigate a massive sequence space of combinatorial mutations, representing billions of RBD variants, by accurately predicting their impact on ACE2 binding and antibody escape. A highly diverse landscape of possible SARS-CoV-2 variants is identified that could emerge from a multitude of evolutionary trajectories. DML may be used for predictive profiling on current and prospective variants, including highly mutated variants such as Omicron, thus guiding the development of therapeutic antibody treatments and vaccines for COVID-19.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/genética , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas contra la COVID-19 , Humanos , Mutación , Pandemias , Unión Proteica , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética
3.
Immunity ; 55(10): 1953-1966.e10, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36174557

RESUMEN

A major challenge in adoptive T cell immunotherapy is the discovery of natural T cell receptors (TCRs) with high activity and specificity to tumor antigens. Engineering synthetic TCRs for increased tumor antigen recognition is complicated by the risk of introducing cross-reactivity and by the poor correlation that can exist between binding affinity and activity of TCRs in response to antigen (peptide-MHC). Here, we developed TCR-Engine, a method combining genome editing, computational design, and deep sequencing to engineer the functional activity and specificity of TCRs on the surface of a human T cell line at high throughput. We applied TCR-Engine to successfully engineer synthetic TCRs for increased potency and specificity to a clinically relevant tumor-associated antigen (MAGE-A3) and validated their translational potential through multiple in vitro and in vivo assessments of safety and efficacy. Thus, TCR-Engine represents a valuable technology for engineering of safe and potent synthetic TCRs for immunotherapy applications.


Asunto(s)
Inmunoterapia Adoptiva , Receptores de Antígenos de Linfocitos T , Antígenos de Neoplasias , Humanos , Inmunoterapia , Péptidos
4.
MAbs ; 14(1): 2031482, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35377271

RESUMEN

Generative machine learning (ML) has been postulated to become a major driver in the computational design of antigen-specific monoclonal antibodies (mAb). However, efforts to confirm this hypothesis have been hindered by the infeasibility of testing arbitrarily large numbers of antibody sequences for their most critical design parameters: paratope, epitope, affinity, and developability. To address this challenge, we leveraged a lattice-based antibody-antigen binding simulation framework, which incorporates a wide range of physiological antibody-binding parameters. The simulation framework enables the computation of synthetic antibody-antigen 3D-structures, and it functions as an oracle for unrestricted prospective evaluation and benchmarking of antibody design parameters of ML-generated antibody sequences. We found that a deep generative model, trained exclusively on antibody sequence (one dimensional: 1D) data can be used to design conformational (three dimensional: 3D) epitope-specific antibodies, matching, or exceeding the training dataset in affinity and developability parameter value variety. Furthermore, we established a lower threshold of sequence diversity necessary for high-accuracy generative antibody ML and demonstrated that this lower threshold also holds on experimental real-world data. Finally, we show that transfer learning enables the generation of high-affinity antibody sequences from low-N training data. Our work establishes a priori feasibility and the theoretical foundation of high-throughput ML-based mAb design.


Asunto(s)
Reacciones Antígeno-Anticuerpo , Aprendizaje Automático , Anticuerpos Monoclonales/química , Sitios de Unión de Anticuerpos , Epítopos
5.
Cell Rep ; 38(3): 110242, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34998467

RESUMEN

Characterization of COVID-19 antibodies has largely focused on memory B cells; however, it is the antibody-secreting plasma cells that are directly responsible for the production of serum antibodies, which play a critical role in resolving SARS-CoV-2 infection. Little is known about the specificity of plasma cells, largely because plasma cells lack surface antibody expression, thereby complicating their screening. Here, we describe a technology pipeline that integrates single-cell antibody repertoire sequencing and mammalian display to interrogate the specificity of plasma cells from 16 convalescent patients. Single-cell sequencing allows us to profile antibody repertoire features and identify expanded clonal lineages. Mammalian display screening is used to reveal that 43 antibodies (of 132 candidates) derived from expanded plasma cell lineages are specific to SARS-CoV-2 antigens, including antibodies with high affinity to the SARS-CoV-2 receptor-binding domain (RBD) that exhibit potent neutralization and broad binding to the RBD of SARS-CoV-2 variants (of concern/interest).


Asunto(s)
Anticuerpos Neutralizantes/aislamiento & purificación , Células Plasmáticas/metabolismo , SARS-CoV-2/inmunología , Análisis de la Célula Individual/métodos , Animales , Anticuerpos Antivirales/aislamiento & purificación , COVID-19/inmunología , COVID-19/prevención & control , Células Cultivadas , Estudios de Cohortes , Biblioteca de Genes , Células HEK293 , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Mamíferos , Pruebas de Neutralización , Biblioteca de Péptidos , Células Plasmáticas/química
6.
Genome Res ; 31(12): 2209-2224, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34815307

RESUMEN

The process of recombination between variable (V), diversity (D), and joining (J) immunoglobulin (Ig) gene segments determines an individual's naive Ig repertoire and, consequently, (auto)antigen recognition. VDJ recombination follows probabilistic rules that can be modeled statistically. So far, it remains unknown whether VDJ recombination rules differ between individuals. If these rules differed, identical (auto)antigen-specific Ig sequences would be generated with individual-specific probabilities, signifying that the available Ig sequence space is individual specific. We devised a sensitivity-tested distance measure that enables inter-individual comparison of VDJ recombination models. We discovered, accounting for several sources of noise as well as allelic variation in Ig sequencing data, that not only unrelated individuals but also human monozygotic twins and even inbred mice possess statistically distinguishable immunoglobulin recombination models. This suggests that, in addition to genetic, there is also nongenetic modulation of VDJ recombination. We demonstrate that population-wide individualized VDJ recombination can result in orders of magnitude of difference in the probability to generate (auto)antigen-specific Ig sequences. Our findings have implications for immune receptor-based individualized medicine approaches relevant to vaccination, infection, and autoimmunity.

7.
Front Immunol ; 12: 701085, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34322127

RESUMEN

COVID-19 disease outcome is highly dependent on adaptive immunity from T and B lymphocytes, which play a critical role in the control, clearance and long-term protection against SARS-CoV-2. To date, there is limited knowledge on the composition of the T and B cell immune receptor repertoires [T cell receptors (TCRs) and B cell receptors (BCRs)] and transcriptomes in convalescent COVID-19 patients of different age groups. Here, we utilize single-cell sequencing (scSeq) of lymphocyte immune repertoires and transcriptomes to quantitatively profile the adaptive immune response in COVID-19 patients of varying age. We discovered highly expanded T and B cells in multiple patients, with the most expanded clonotypes coming from the effector CD8+ T cell population. Highly expanded CD8+ and CD4+ T cell clones show elevated markers of cytotoxicity (CD8: PRF1, GZMH, GNLY; CD4: GZMA), whereas clonally expanded B cells show markers of transition into the plasma cell state and activation across patients. By comparing young and old convalescent COVID-19 patients (mean ages = 31 and 66.8 years, respectively), we found that clonally expanded B cells in young patients were predominantly of the IgA isotype and their BCRs had incurred higher levels of somatic hypermutation than elderly patients. In conclusion, our scSeq analysis defines the adaptive immune repertoire and transcriptome in convalescent COVID-19 patients and shows important age-related differences implicated in immunity against SARS-CoV-2.


Asunto(s)
Envejecimiento/inmunología , Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , COVID-19/inmunología , SARS-CoV-2/fisiología , Inmunidad Adaptativa , Adulto , Anciano , Células Cultivadas , Convalecencia , Femenino , Humanos , Masculino , Persona de Mediana Edad , Receptores de Antígenos de Linfocitos B/genética , Receptores de Antígenos de Linfocitos T/genética , Análisis de la Célula Individual , Transcriptoma , Adulto Joven
8.
Nat Biomed Eng ; 5(6): 600-612, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33859386

RESUMEN

The optimization of therapeutic antibodies is time-intensive and resource-demanding, largely because of the low-throughput screening of full-length antibodies (approximately 1 × 103 variants) expressed in mammalian cells, which typically results in few optimized leads. Here we show that optimized antibody variants can be identified by predicting antigen specificity via deep learning from a massively diverse space of antibody sequences. To produce data for training deep neural networks, we deep-sequenced libraries of the therapeutic antibody trastuzumab (about 1 × 104 variants), expressed in a mammalian cell line through site-directed mutagenesis via CRISPR-Cas9-mediated homology-directed repair, and screened the libraries for specificity to human epidermal growth factor receptor 2 (HER2). We then used the trained neural networks to screen a computational library of approximately 1 × 108 trastuzumab variants and predict the HER2-specific subset (approximately 1 × 106 variants), which can then be filtered for viscosity, clearance, solubility and immunogenicity to generate thousands of highly optimized lead candidates. Recombinant expression and experimental testing of 30 randomly selected variants from the unfiltered library showed that all 30 retained specificity for HER2. Deep learning may facilitate antibody engineering and optimization.


Asunto(s)
Antígenos/química , Aprendizaje Profundo , Ingeniería de Proteínas/métodos , Receptor ErbB-2/química , Trastuzumab/química , Secuencia de Aminoácidos , Animales , Afinidad de Anticuerpos , Especificidad de Anticuerpos , Antígenos/genética , Antígenos/inmunología , Sistemas CRISPR-Cas , Humanos , Hibridomas/química , Hibridomas/inmunología , Mutagénesis Sitio-Dirigida , Unión Proteica , Receptor ErbB-2/genética , Receptor ErbB-2/inmunología , Reparación del ADN por Recombinación , Análisis de Secuencia de Proteína , Trastuzumab/genética , Trastuzumab/inmunología
9.
Cell Rep ; 34(11): 108856, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33730590

RESUMEN

Antibody-antigen binding relies on the specific interaction of amino acids at the paratope-epitope interface. The predictability of antibody-antigen binding is a prerequisite for de novo antibody and (neo-)epitope design. A fundamental premise for the predictability of antibody-antigen binding is the existence of paratope-epitope interaction motifs that are universally shared among antibody-antigen structures. In a dataset of non-redundant antibody-antigen structures, we identify structural interaction motifs, which together compose a commonly shared structure-based vocabulary of paratope-epitope interactions. We show that this vocabulary enables the machine learnability of antibody-antigen binding on the paratope-epitope level using generative machine learning. The vocabulary (1) is compact, less than 104 motifs; (2) distinct from non-immune protein-protein interactions; and (3) mediates specific oligo- and polyreactive interactions between paratope-epitope pairs. Our work leverages combined structure- and sequence-based learning to demonstrate that machine-learning-driven predictive paratope and epitope engineering is feasible.


Asunto(s)
Reacciones Antígeno-Anticuerpo/inmunología , Sitios de Unión de Anticuerpos/inmunología , Epítopos/inmunología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Anticuerpos/química , Anticuerpos/inmunología , Regiones Determinantes de Complementariedad/química , Epítopos/química , Aprendizaje Automático , Unión Proteica
10.
Nat Mach Intell ; 3(11): 936-944, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37396030

RESUMEN

Adaptive immune receptor repertoires (AIRR) are key targets for biomedical research as they record past and ongoing adaptive immune responses. The capacity of machine learning (ML) to identify complex discriminative sequence patterns renders it an ideal approach for AIRR-based diagnostic and therapeutic discovery. To date, widespread adoption of AIRR ML has been inhibited by a lack of reproducibility, transparency, and interoperability. immuneML (immuneml.uio.no) addresses these concerns by implementing each step of the AIRR ML process in an extensible, open-source software ecosystem that is based on fully specified and shareable workflows. To facilitate widespread user adoption, immuneML is available as a command-line tool and through an intuitive Galaxy web interface, and extensive documentation of workflows is provided. We demonstrate the broad applicability of immuneML by (i) reproducing a large-scale study on immune state prediction, (ii) developing, integrating, and applying a novel deep learning method for antigen specificity prediction, and (iii) showcasing streamlined interpretability-focused benchmarking of AIRR ML.

11.
Bioinformatics ; 36(11): 3594-3596, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32154832

RESUMEN

SUMMARY: B- and T-cell receptor repertoires of the adaptive immune system have become a key target for diagnostics and therapeutics research. Consequently, there is a rapidly growing number of bioinformatics tools for immune repertoire analysis. Benchmarking of such tools is crucial for ensuring reproducible and generalizable computational analyses. Currently, however, it remains challenging to create standardized ground truth immune receptor repertoires for immunoinformatics tool benchmarking. Therefore, we developed immuneSIM, an R package that allows the simulation of native-like and aberrant synthetic full-length variable region immune receptor sequences by tuning the following immune receptor features: (i) species and chain type (BCR, TCR, single and paired), (ii) germline gene usage, (iii) occurrence of insertions and deletions, (iv) clonal abundance, (v) somatic hypermutation and (vi) sequence motifs. Each simulated sequence is annotated by the complete set of simulation events that contributed to its in silico generation. immuneSIM permits the benchmarking of key computational tools for immune receptor analysis, such as germline gene annotation, diversity and overlap estimation, sequence similarity, network architecture, clustering analysis and machine learning methods for motif detection. AVAILABILITY AND IMPLEMENTATION: The package is available via https://github.com/GreiffLab/immuneSIM and on CRAN at https://cran.r-project.org/web/packages/immuneSIM. The documentation is hosted at https://immuneSIM.readthedocs.io. CONTACT: sai.reddy@ethz.ch or victor.greiff@medisin.uio.no. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Benchmarking , Programas Informáticos , Simulación por Computador , Receptores de Antígenos de Linfocitos T/genética
12.
Nucleic Acids Res ; 46(14): 7436-7449, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-29931269

RESUMEN

Antibody engineering is often performed to improve therapeutic properties by directed evolution, usually by high-throughput screening of phage or yeast display libraries. Engineering antibodies in mammalian cells offer advantages associated with expression in their final therapeutic format (full-length glycosylated IgG); however, the inability to express large and diverse libraries severely limits their potential throughput. To address this limitation, we have developed homology-directed mutagenesis (HDM), a novel method which extends the concept of CRISPR/Cas9-mediated homology-directed repair (HDR). HDM leverages oligonucleotides with degenerate codons to generate site-directed mutagenesis libraries in mammalian cells. By improving HDR to a robust efficiency of 15-35% and combining mammalian display screening with next-generation sequencing, we validated this approach can be used for key applications in antibody engineering at high-throughput: rational library construction, novel variant discovery, affinity maturation and deep mutational scanning (DMS). We anticipate that HDM will be a valuable tool for engineering and optimizing antibodies in mammalian cells, and eventually enable directed evolution of other complex proteins and cellular therapeutics.


Asunto(s)
Anticuerpos/inmunología , Sistemas CRISPR-Cas , Mutagénesis Sitio-Dirigida , Ingeniería de Proteínas/métodos , Secuencia de Aminoácidos , Animales , Anticuerpos/genética , Anticuerpos/metabolismo , Afinidad de Anticuerpos/genética , Afinidad de Anticuerpos/inmunología , Secuencia de Bases , Línea Celular , Roturas del ADN de Doble Cadena , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Hibridomas , Oligonucleótidos/genética , Oligonucleótidos/metabolismo , Reparación del ADN por Recombinación
13.
Front Immunol ; 9: 224, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29515569

RESUMEN

The adaptive immune system recognizes antigens via an immense array of antigen-binding antibodies and T-cell receptors, the immune repertoire. The interrogation of immune repertoires is of high relevance for understanding the adaptive immune response in disease and infection (e.g., autoimmunity, cancer, HIV). Adaptive immune receptor repertoire sequencing (AIRR-seq) has driven the quantitative and molecular-level profiling of immune repertoires, thereby revealing the high-dimensional complexity of the immune receptor sequence landscape. Several methods for the computational and statistical analysis of large-scale AIRR-seq data have been developed to resolve immune repertoire complexity and to understand the dynamics of adaptive immunity. Here, we review the current research on (i) diversity, (ii) clustering and network, (iii) phylogenetic, and (iv) machine learning methods applied to dissect, quantify, and compare the architecture, evolution, and specificity of immune repertoires. We summarize outstanding questions in computational immunology and propose future directions for systems immunology toward coupling AIRR-seq with the computational discovery of immunotherapeutics, vaccines, and immunodiagnostics.


Asunto(s)
Inmunidad Adaptativa/inmunología , Biología Computacional/métodos , Aprendizaje Automático , Receptores Inmunológicos/inmunología , Transducción de Señal/inmunología , Animales , Enfermedades Autoinmunes/inmunología , Biología Computacional/instrumentación , Interpretación Estadística de Datos , Infecciones por VIH/inmunología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Neoplasias/inmunología , Receptores Inmunológicos/genética , Programas Informáticos
14.
J Immunol ; 199(8): 2985-2997, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28924003

RESUMEN

Recent studies have revealed that immune repertoires contain a substantial fraction of public clones, which may be defined as Ab or TCR clonal sequences shared across individuals. It has remained unclear whether public clones possess predictable sequence features that differentiate them from private clones, which are believed to be generated largely stochastically. This knowledge gap represents a lack of insight into the shaping of immune repertoire diversity. Leveraging a machine learning approach capable of capturing the high-dimensional compositional information of each clonal sequence (defined by CDR3), we detected predictive public clone and private clone-specific immunogenomic differences concentrated in CDR3's N1-D-N2 region, which allowed the prediction of public and private status with 80% accuracy in humans and mice. Our results unexpectedly demonstrate that public, as well as private, clones possess predictable high-dimensional immunogenomic features. Our support vector machine model could be trained effectively on large published datasets (3 million clonal sequences) and was sufficiently robust for public clone prediction across individuals and studies prepared with different library preparation and high-throughput sequencing protocols. In summary, we have uncovered the existence of high-dimensional immunogenomic rules that shape immune repertoire diversity in a predictable fashion. Our approach may pave the way for the construction of a comprehensive atlas of public mouse and human immune repertoires with potential applications in rational vaccine design and immunotherapeutics.


Asunto(s)
Linfocitos B/fisiología , Regiones Determinantes de Complementariedad/genética , Inmunoterapia/métodos , Receptores de Antígenos de Linfocitos B/genética , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T/fisiología , Vacunas/inmunología , Animales , Diversidad de Anticuerpos , Selección Clonal Mediada por Antígenos , Células Clonales , Conjuntos de Datos como Asunto , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...