Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Elife ; 122024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38266073

RESUMEN

Norepinephrine (NE) neurons in the locus coeruleus (LC) make long-range projections throughout the central nervous system, playing critical roles in arousal and mood, as well as various components of cognition including attention, learning, and memory. The LC-NE system is also implicated in multiple neurological and neuropsychiatric disorders. Importantly, LC-NE neurons are highly sensitive to degeneration in both Alzheimer's and Parkinson's disease. Despite the clinical importance of the brain region and the prominent role of LC-NE neurons in a variety of brain and behavioral functions, a detailed molecular characterization of the LC is lacking. Here, we used a combination of spatially-resolved transcriptomics and single-nucleus RNA-sequencing to characterize the molecular landscape of the LC region and the transcriptomic profile of LC-NE neurons in the human brain. We provide a freely accessible resource of these data in web-accessible and downloadable formats.


Asunto(s)
Locus Coeruleus , Núcleo Solitario , Humanos , Perfilación de la Expresión Génica , Sistema Nervioso Central , Norepinefrina , Expresión Génica
2.
Genome Biol ; 24(1): 239, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37864274

RESUMEN

BACKGROUND: Single-cell gene expression profiling provides unique opportunities to understand tumor heterogeneity and the tumor microenvironment. Because of cost and feasibility, profiling bulk tumors remains the primary population-scale analytical strategy. Many algorithms can deconvolve these tumors using single-cell profiles to infer their composition. While experimental choices do not change the true underlying composition of the tumor, they can affect the measurements produced by the assay. RESULTS: We generated a dataset of high-grade serous ovarian tumors with paired expression profiles from using multiple strategies to examine the extent to which experimental factors impact the results of downstream tumor deconvolution methods. We find that pooling samples for single-cell sequencing and subsequent demultiplexing has a minimal effect. We identify dissociation-induced differences that affect cell composition, leading to changes that may compromise the assumptions underlying some deconvolution algorithms. We also observe differences across mRNA enrichment methods that introduce additional discrepancies between the two data types. We also find that experimental factors change cell composition estimates and that the impact differs by method. CONCLUSIONS: Previous benchmarks of deconvolution methods have largely ignored experimental factors. We find that methods vary in their robustness to experimental factors. We provide recommendations for methods developers seeking to produce the next generation of deconvolution approaches and for scientists designing experiments using deconvolution to study tumor heterogeneity.


Asunto(s)
Perfilación de la Expresión Génica , Neoplasias Ováricas , Humanos , Femenino , Perfilación de la Expresión Génica/métodos , Algoritmos , Análisis de Secuencia de ARN/métodos , Neoplasias Ováricas/genética , Transcriptoma , Microambiente Tumoral
3.
Nat Commun ; 14(1): 4059, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37429865

RESUMEN

Feature selection to identify spatially variable genes or other biologically informative genes is a key step during analyses of spatially-resolved transcriptomics data. Here, we propose nnSVG, a scalable approach to identify spatially variable genes based on nearest-neighbor Gaussian processes. Our method (i) identifies genes that vary in expression continuously across the entire tissue or within a priori defined spatial domains, (ii) uses gene-specific estimates of length scale parameters within the Gaussian process models, and (iii) scales linearly with the number of spatial locations. We demonstrate the performance of our method using experimental data from several technological platforms and simulations. A software implementation is available at https://bioconductor.org/packages/nnSVG .


Asunto(s)
Perfilación de la Expresión Génica , Programas Informáticos , Análisis por Conglomerados , Distribución Normal
4.
Biol Imaging ; 3: e23, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38510173

RESUMEN

Spatially resolved transcriptomics (SRT) is a growing field that links gene expression to anatomical context. SRT approaches that use next-generation sequencing (NGS) combine RNA sequencing with histological or fluorescent imaging to generate spatial maps of gene expression in intact tissue sections. These technologies directly couple gene expression measurements with high-resolution histological or immunofluorescent images that contain rich morphological information about the tissue under study. While broad access to NGS-based spatial transcriptomic technology is now commercially available through the Visium platform from the vendor 10× Genomics, computational tools for extracting image-derived metrics for integration with gene expression data remain limited. We developed VistoSeg as a MATLAB pipeline to process, analyze and interactively visualize the high-resolution images generated in the Visium platform. VistoSeg outputs can be easily integrated with accompanying transcriptomic data to facilitate downstream analyses in common programing languages including R and Python. VistoSeg provides user-friendly tools for integrating image-derived metrics from histological and immunofluorescent images with spatially resolved gene expression data. Integration of this data enhances the ability to understand the transcriptional landscape within tissue architecture. VistoSeg is freely available at http://research.libd.org/VistoSeg/.

5.
J Immunother Cancer ; 10(9)2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36137652

RESUMEN

BACKGROUND AND AIMS: The role of inflammatory immune responses in colorectal cancer (CRC) development and response to therapy is a matter of intense debate. While inflammation is a known driver of CRC, inflammatory immune infiltrates are a positive prognostic factor in CRC and predispose to response to immune checkpoint blockade (ICB) therapy. Unfortunately, over 85% of CRC cases are primarily unresponsive to ICB due to the absence of an immune infiltrate, and even the cases that show an initial immune infiltration can become refractory to ICB. The identification of therapy supportive immune responses in the field has been partially hindered by the sparsity of suitable mouse models to recapitulate the human disease. In this study, we aimed to understand how the dysregulation of the complement anaphylatoxin C3a receptor (C3aR), observed in subsets of patients with CRC, affects the immune responses, the development of CRC, and response to ICB therapy. METHODS: We use a comprehensive approach encompassing analysis of publicly available human CRC datasets, inflammation-driven and newly generated spontaneous mouse models of CRC, and multiplatform high-dimensional analysis of immune responses using microbiota sequencing, RNA sequencing, and mass cytometry. RESULTS: We found that patients' regulation of the complement C3aR is associated with epigenetic modifications. Specifically, downregulation of C3ar1 in human CRC promotes a tumor microenvironment characterized by the accumulation of innate and adaptive immune cells that support antitumor immunity. In addition, in vivo studies in our newly generated mouse model revealed that the lack of C3a in the colon activates a microbiota-mediated proinflammatory program which promotes the development of tumors with an immune signature that renders them responsive to the ICB therapy. CONCLUSIONS: Our findings reveal that C3aR may act as a previously unrecognized checkpoint to enhance antitumor immunity in CRC. C3aR can thus be exploited to overcome ICB resistance in a larger group of patients with CRC.


Asunto(s)
Neoplasias Colorrectales , Inhibidores de Puntos de Control Inmunológico , Anafilatoxinas , Animales , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Regulación hacia Abajo , Humanos , Factores Inmunológicos , Inmunoterapia/métodos , Inflamación/patología , Ratones , Microambiente Tumoral
6.
BMC Genomics ; 23(1): 434, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35689177

RESUMEN

BACKGROUND: Spatially-resolved transcriptomics has now enabled the quantification of high-throughput and transcriptome-wide gene expression in intact tissue while also retaining the spatial coordinates. Incorporating the precise spatial mapping of gene activity advances our understanding of intact tissue-specific biological processes. In order to interpret these novel spatial data types, interactive visualization tools are necessary. RESULTS: We describe spatialLIBD, an R/Bioconductor package to interactively explore spatially-resolved transcriptomics data generated with the 10x Genomics Visium platform. The package contains functions to interactively access, visualize, and inspect the observed spatial gene expression data and data-driven clusters identified with supervised or unsupervised analyses, either on the user's computer or through a web application. CONCLUSIONS: spatialLIBD is available at https://bioconductor.org/packages/spatialLIBD . It is fully compatible with SpatialExperiment and the Bioconductor ecosystem. Its functionality facilitates analyzing and interactively exploring spatially-resolved data from the Visium platform.


Asunto(s)
Ecosistema , Transcriptoma , Genómica , Programas Informáticos
7.
Bioinformatics ; 38(11): 3128-3131, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35482478

RESUMEN

SUMMARY: SpatialExperiment is a new data infrastructure for storing and accessing spatially-resolved transcriptomics data, implemented within the R/Bioconductor framework, which provides advantages of modularity, interoperability, standardized operations and comprehensive documentation. Here, we demonstrate the structure and user interface with examples from the 10x Genomics Visium and seqFISH platforms, and provide access to example datasets and visualization tools in the STexampleData, TENxVisiumData and ggspavis packages. AVAILABILITY AND IMPLEMENTATION: The SpatialExperiment, STexampleData, TENxVisiumData and ggspavis packages are available from Bioconductor. The package versions described in this manuscript are available in Bioconductor version 3.15 onwards. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Programas Informáticos , Transcriptoma , Genómica
9.
Gigascience ; 10(9)2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34553212

RESUMEN

BACKGROUND: Pooling cells from multiple biological samples prior to library preparation within the same single-cell RNA sequencing experiment provides several advantages, including lower library preparation costs and reduced unwanted technological variation, such as batch effects. Computational demultiplexing tools based on natural genetic variation between individuals provide a simple approach to demultiplex samples, which does not require complex additional experimental procedures. However, to our knowledge these tools have not been evaluated in cancer, where somatic variants, which could differ between cells from the same sample, may obscure the signal in natural genetic variation. RESULTS: Here, we performed in silico benchmark evaluations by combining raw sequencing reads from multiple single-cell samples in high-grade serous ovarian cancer, which has a high copy number burden, and lung adenocarcinoma, which has a high tumor mutational burden. Our results confirm that genetic demultiplexing tools can be effectively deployed on cancer tissue using a pooled experimental design, although high proportions of ambient RNA from cell debris reduce performance. CONCLUSIONS: This strategy provides significant cost savings through pooled library preparation. To facilitate similar analyses at the experimental design phase, we provide freely accessible code and a reproducible Snakemake workflow built around the best-performing tools found in our in silico benchmark evaluations, available at https://github.com/lmweber/snp-dmx-cancer.


Asunto(s)
Neoplasias , Proyectos de Investigación , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Neoplasias/genética , ARN , Programas Informáticos
10.
PLoS Comput Biol ; 17(8): e1009290, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34428202

RESUMEN

Single-cell RNA-sequencing (scRNA-seq) has made it possible to profile gene expression in tissues at high resolution. An important preprocessing step prior to performing downstream analyses is to identify and remove cells with poor or degraded sample quality using quality control (QC) metrics. Two widely used QC metrics to identify a 'low-quality' cell are (i) if the cell includes a high proportion of reads that map to mitochondrial DNA (mtDNA) encoded genes and (ii) if a small number of genes are detected. Current best practices use these QC metrics independently with either arbitrary, uniform thresholds (e.g. 5%) or biological context-dependent (e.g. species) thresholds, and fail to jointly model these metrics in a data-driven manner. Current practices are often overly stringent and especially untenable on certain types of tissues, such as archived tumor tissues, or tissues associated with mitochondrial function, such as kidney tissue [1]. We propose a data-driven QC metric (miQC) that jointly models both the proportion of reads mapping to mtDNA genes and the number of detected genes with mixture models in a probabilistic framework to predict the low-quality cells in a given dataset. We demonstrate how our QC metric easily adapts to different types of single-cell datasets to remove low-quality cells while preserving high-quality cells that can be used for downstream analyses. Our software package is available at https://bioconductor.org/packages/miQC.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Probabilidad , Control de Calidad , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , ADN Mitocondrial/genética , Humanos
12.
Nat Neurosci ; 24(3): 425-436, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33558695

RESUMEN

We used the 10x Genomics Visium platform to define the spatial topography of gene expression in the six-layered human dorsolateral prefrontal cortex. We identified extensive layer-enriched expression signatures and refined associations to previous laminar markers. We overlaid our laminar expression signatures on large-scale single nucleus RNA-sequencing data, enhancing spatial annotation of expression-driven clusters. By integrating neuropsychiatric disorder gene sets, we showed differential layer-enriched expression of genes associated with schizophrenia and autism spectrum disorder, highlighting the clinical relevance of spatially defined expression. We then developed a data-driven framework to define unsupervised clusters in spatial transcriptomics data, which can be applied to other tissues or brain regions in which morphological architecture is not as well defined as cortical laminae. Last, we created a web application for the scientific community to explore these raw and summarized data to augment ongoing neuroscience and spatial transcriptomics research ( http://research.libd.org/spatialLIBD ).


Asunto(s)
Expresión Génica , Corteza Prefrontal/metabolismo , Transcriptoma , Redes Reguladoras de Genes , Humanos
13.
F1000Res ; 10: 80, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35847383

RESUMEN

Next Generation Sequencing technologies significantly impact the field of Antimicrobial Resistance (AMR) detection and monitoring, with immediate uses in diagnosis and risk assessment. For this application and in general, considerable challenges remain in demonstrating sufficient trust to act upon the meaningful information produced from raw data, partly because of the reliance on bioinformatics pipelines, which can produce different results and therefore lead to different interpretations. With the constant evolution of the field, it is difficult to identify, harmonise and recommend specific methods for large-scale implementations over time. In this article, we propose to address this challenge through establishing a transparent, performance-based, evaluation approach to provide flexibility in the bioinformatics tools of choice, while demonstrating proficiency in meeting common performance standards. The approach is two-fold: first, a community-driven effort to establish and maintain "live" (dynamic) benchmarking platforms to provide relevant performance metrics, based on different use-cases, that would evolve together with the AMR field; second, agreed and defined datasets to allow the pipelines' implementation, validation, and quality-control over time. Following previous discussions on the main challenges linked to this approach, we provide concrete recommendations and future steps, related to different aspects of the design of benchmarks, such as the selection and the characteristics of the datasets (quality, choice of pathogens and resistances, etc.), the evaluation criteria of the pipelines, and the way these resources should be deployed in the community.


Asunto(s)
Benchmarking , Secuenciación de Nucleótidos de Alto Rendimiento , Antibacterianos/farmacología , Biología Computacional/métodos , Farmacorresistencia Bacteriana/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
14.
FASEB J ; 34(3): 4204-4218, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31957112

RESUMEN

The accumulation of circulating low-density neutrophils (LDN) has been described in cancer patients and associated with tumor-supportive properties, as opposed to the high-density neutrophils (HDN). Here we aimed to evaluate the clinical significance of circulating LDN in lung cancer patients, and further assessed its diagnostic vs prognostic value. Using mass cytometry (CyTOF), we identified major subpopulations within the circulating LDN/HDN subsets and determined phenotypic modulations of these subsets along tumor progression. LDN were highly enriched in the low-density (LD) fraction of advanced lung cancer patients (median 7.0%; range 0.2%-80%, n = 64), but not in early stage patients (0.7%; 0.05%-6%; n = 35), healthy individuals (0.8%; 0%-3.5%; n = 15), or stable chronic obstructive pulmonary disease (COPD) patients (1.2%; 0.3%-7.4%, n = 13). Elevated LDN (>10%) remarkably related with poorer prognosis in late stage patients. We identified three main neutrophil subsets which proportions are markedly modified in cancer patients, with CD66b+ /CD10low /CXCR4+ /PDL1inter subset almost exclusively found in advanced lung cancer patients. We found substantial variability in subsets between patients, and demonstrated that HDN and LDN retain a degree of inherent spontaneous plasticity. Deep phenotypic characterization of cancer-related circulating neutrophils and their modulation along tumor progression is an important advancement in understanding the role of myeloid cells in lung cancer.


Asunto(s)
Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Neutrófilos/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Antígenos CD/inmunología , Antígenos CD/metabolismo , Moléculas de Adhesión Celular/inmunología , Moléculas de Adhesión Celular/metabolismo , Femenino , Citometría de Flujo , Proteínas Ligadas a GPI/inmunología , Proteínas Ligadas a GPI/metabolismo , Humanos , Neoplasias Pulmonares/patología , Linfocitos/inmunología , Linfocitos/metabolismo , Masculino , Persona de Mediana Edad , Pronóstico , Enfermedad Pulmonar Obstructiva Crónica/patología
15.
F1000Res ; 8: 1459, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31857895

RESUMEN

Benchmarking is a crucial step during computational analysis and method development. Recently, a number of new methods have been developed for analyzing high-dimensional cytometry data. However, it can be difficult for analysts and developers to find and access well-characterized benchmark datasets. Here, we present HDCytoData, a Bioconductor package providing streamlined access to several publicly available high-dimensional cytometry benchmark datasets. The package is designed to be extensible, allowing new datasets to be contributed by ourselves or other researchers in the future. Currently, the package includes a set of experimental and semi-simulated datasets, which have been used in our previous work to evaluate methods for clustering and differential analyses. Datasets are formatted into standard SummarizedExperiment and flowSet Bioconductor object formats, which include complete metadata within the objects. Access is provided through Bioconductor's ExperimentHub interface. The package is freely available from http://bioconductor.org/packages/HDCytoData.


Asunto(s)
Biología Computacional/normas , Técnicas Citológicas/normas , Programas Informáticos , Análisis por Conglomerados , Conjuntos de Datos como Asunto , Humanos
16.
Genome Biol ; 20(1): 125, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31221194

RESUMEN

In computational biology and other sciences, researchers are frequently faced with a choice between several computational methods for performing data analyses. Benchmarking studies aim to rigorously compare the performance of different methods using well-characterized benchmark datasets, to determine the strengths of each method or to provide recommendations regarding suitable choices of methods for an analysis. However, benchmarking studies must be carefully designed and implemented to provide accurate, unbiased, and informative results. Here, we summarize key practical guidelines and recommendations for performing high-quality benchmarking analyses, based on our experiences in computational biology.


Asunto(s)
Biología Computacional/normas , Guías como Asunto , Benchmarking , Conjuntos de Datos como Asunto , Edición , Proyectos de Investigación , Programas Informáticos
17.
Commun Biol ; 2: 183, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31098416

RESUMEN

High-dimensional flow and mass cytometry allow cell types and states to be characterized in great detail by measuring expression levels of more than 40 targeted protein markers per cell at the single-cell level. However, data analysis can be difficult, due to the large size and dimensionality of datasets as well as limitations of existing computational methods. Here, we present diffcyt, a new computational framework for differential discovery analyses in high-dimensional cytometry data, based on a combination of high-resolution clustering and empirical Bayes moderated tests adapted from transcriptomics. Our approach provides improved statistical performance, including for rare cell populations, along with flexible experimental designs and fast runtimes in an open-source framework.


Asunto(s)
Biología Computacional/métodos , Citometría de Flujo/métodos , Análisis de la Célula Individual/métodos , Programas Informáticos , Algoritmos , Teorema de Bayes , Análisis por Conglomerados , Interpretación Estadística de Datos , Bases de Datos Factuales/estadística & datos numéricos , Citometría de Flujo/estadística & datos numéricos , Humanos , Análisis de la Célula Individual/estadística & datos numéricos , Aprendizaje Automático no Supervisado
18.
Nat Med ; 24(11): 1773-1775, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29967347

RESUMEN

In the version of this article initially published, Figs. 5a,c and 6a were incorrect because of an error in a metadata spreadsheet that led to the healthy donor patient 2 (HD2) samples being used twice in the analysis of baseline samples and in the analysis at 12 weeks of anti-PD-1 therapy, while HD3 samples had not been used.

19.
Nat Med ; 24(2): 144-153, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29309059

RESUMEN

Immune-checkpoint blockade has revolutionized cancer therapy. In particular, inhibition of programmed cell death protein 1 (PD-1) has been found to be effective for the treatment of metastatic melanoma and other cancers. Despite a dramatic increase in progression-free survival, a large proportion of patients do not show durable responses. Therefore, predictive biomarkers of a clinical response are urgently needed. Here we used high-dimensional single-cell mass cytometry and a bioinformatics pipeline for the in-depth characterization of the immune cell subsets in the peripheral blood of patients with stage IV melanoma before and after 12 weeks of anti-PD-1 immunotherapy. During therapy, we observed a clear response to immunotherapy in the T cell compartment. However, before commencing therapy, a strong predictor of progression-free and overall survival in response to anti-PD-1 immunotherapy was the frequency of CD14+CD16-HLA-DRhi monocytes. We confirmed this by conventional flow cytometry in an independent, blinded validation cohort, and we propose that the frequency of monocytes in PBMCs may serve in clinical decision support.


Asunto(s)
Melanoma , Receptor de Muerte Celular Programada 1/inmunología , Biomarcadores , Humanos , Inmunoterapia , Análisis de la Célula Individual
20.
F1000Res ; 6: 748, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28663787

RESUMEN

High-dimensional mass and flow cytometry (HDCyto) experiments have become a method of choice for high-throughput interrogation and characterization of cell populations. Here, we present an updated R-based pipeline for differential analyses of HDCyto data, largely based on Bioconductor packages. We computationally define cell populations using FlowSOM clustering, and facilitate an optional but reproducible strategy for manual merging of algorithm-generated clusters. Our workflow offers different analysis paths, including association of cell type abundance with a phenotype or changes in signalling markers within specific subpopulations, or differential analyses of aggregated signals. Importantly, the differential analyses we show are based on regression frameworks where the HDCyto data is the response; thus, we are able to model arbitrary experimental designs, such as those with batch effects, paired designs and so on. In particular, we apply generalized linear mixed models or linear mixed models to analyses of cell population abundance or cell-population-specific analyses of signaling markers, allowing overdispersion in cell count or aggregated signals across samples to be appropriately modeled. To support the formal statistical analyses, we encourage exploratory data analysis at every step, including quality control (e.g., multi-dimensional scaling plots), reporting of clustering results (dimensionality reduction, heatmaps with dendrograms) and differential analyses (e.g., plots of aggregated signals).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...