Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 1415, 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36959187

RESUMEN

Droughts reduce hydropower production and heatwaves increase electricity demand, forcing power system operators to rely more on fossil fuel power plants. However, less is known about how droughts and heat waves impact the county level distribution of health damages from power plant emissions. Using California as a case study, we simulate emissions from power plants under a 500-year synthetic weather ensemble. We find that human health damages are highest in hot, dry years. Counties with a majority of people of color and counties with high pollution burden (which are somewhat overlapping) are disproportionately impacted by increased emissions from power plants during droughts and heat waves. Taxing power plant operations based on each plant's contribution to health damages significantly reduces average exposure. However, emissions taxes do not reduce air pollution damages on the worst polluting days, because supply scarcity (caused by severe heat waves) forces system operators to use every power plant available to avoid causing a blackout.

3.
Sci Total Environ ; 750: 140927, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32853928

RESUMEN

Salt marshes provide critical ecosystem services including some of the highest rates of carbon storage on Earth. However, many salt marshes receive very high nutrient loads and there is a growing body of evidence indicating that this nutrient enrichment alters carbon cycle processes. While many restoration plans prioritize nutrient management in their efforts to conserve salt marsh ecosystems, there has been little empirical investigation of the capacity for carbon cycle processes to recover once nutrient loading is reduced. To address this, we compared rates of greenhouse gas fluxes (i.e., CO2 and methane) measured using static chambers, and soil organic matter decomposition, using both litter bags and the Tea Bag Index (TBI), during the last two years of a long-term, ecosystem-scale nutrient enrichment experiment (2015-2016) as well as in the first two years of recovery post-enrichment (2017-2018). We found that both ecosystem respiration (Reco) and decomposition processes (i.e., rhizome decomposition and soil organic matter stabilization) were enhanced by nutrient enrichment, but returned to reference ecosystem levels within the first year following the cessation of nutrient enrichment and remained at reference levels in the second year. These results suggest that management practices intended to reduce nutrient loads in coastal systems may, in fact, allow for rapid recovery of carbon cycle processes, potentially restoring the high carbon sequestration rates of these blue carbon ecosystems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA