Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Endocr Connect ; 8(3): 289-298, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30763276

RESUMEN

Multiple endocrine neoplasia type 2 (MEN2) is an autosomal dominant genetic disease caused by RET gene germline mutations that is characterized by medullary thyroid carcinoma (MTC) associated with other endocrine tumors. Several reports have demonstrated that the RET mutation profile may vary according to the geographical area. In this study, we collected clinical and molecular data from 554 patients with surgically confirmed MTC from 176 families with MEN2 in 18 different Brazilian centers to compare the type and prevalence of RET mutations with those from other countries. The most frequent mutations, classified by the number of families affected, occur in codon 634, exon 11 (76 families), followed by codon 918, exon 16 (34 families: 26 with M918T and 8 with M918V) and codon 804, exon 14 (22 families: 15 with V804M and 7 with V804L). When compared with other major published series from Europe, there are several similarities and some differences. While the mutations in codons C618, C620, C630, E768 and S891 present a similar prevalence, some mutations have a lower prevalence in Brazil, and others are found mainly in Brazil (G533C and M918V). These results reflect the singular proportion of European, Amerindian and African ancestries in the Brazilian mosaic genome.

2.
BMC Microbiol ; 11: 107, 2011 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-21575234

RESUMEN

BACKGROUND: Azospirillum amazonense has potential to be used as agricultural inoculant since it promotes plant growth without causing pollution, unlike industrial fertilizers. Owing to this fact, the study of this species has gained interest. However, a detailed understanding of its genetics and physiology is limited by the absence of appropriate genetic tools for the study of this species. RESULTS: Conjugation and electrotransformation methods were established utilizing vectors with broad host-replication origins (pVS1 and pBBR1). Two genes of interest--glnK and glnB, encoding PII regulatory proteins--were isolated. Furthermore, glnK-specific A. amazonense mutants were generated utilizing the pK19MOBSACB vector system. Finally, a promoter analysis protocol based on fluorescent protein expression was optimized to aid genetic regulation studies on this bacterium. CONCLUSION: In this work, genetic tools that can support the study of A. amazonense were described. These methods could provide a better understanding of the genetic mechanisms of this species that underlie its plant growth promotion.


Asunto(s)
Azospirillum/genética , Ingeniería Genética/métodos , Genética Microbiana/métodos , Proteínas Bacterianas/genética , Conjugación Genética , ADN Bacteriano/química , ADN Bacteriano/genética , Genes Reporteros , Vectores Genéticos , Datos de Secuencia Molecular , Plantas/microbiología , Análisis de Secuencia de ADN , Transformación Bacteriana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...