Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Z Rheumatol ; 2024 Jun 17.
Artículo en Alemán | MEDLINE | ID: mdl-38884811

RESUMEN

Erythema nodosum (EN) is the most frequently occurring form of acute panniculitis. It is characterized by painful red to livid raised nodules or bumps that typically occur symmetrically in the shin area. The cause of EN is often a reaction of the immune system to various triggers including infections, inflammatory diseases or medications. In approximately half of the cases no trigger can be identified. After treatment of the underlying pathology EN is typically self-limiting.

2.
Front Immunol ; 15: 1373255, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38585266

RESUMEN

Acting through a combination of direct and indirect pathogen clearance mechanisms, blood-derived antimicrobial compounds (AMCs) play a pivotal role in innate immunity, safeguarding the host against invading microorganisms. Besides their antimicrobial activity, some AMCs can neutralize endotoxins, preventing their interaction with immune cells and avoiding an excessive inflammatory response. In this study, we aimed to investigate the influence of unfractionated heparin, a polyanionic drug clinically used as anticoagulant, on the endotoxin-neutralizing and antibacterial activity of blood-derived AMCs. Serum samples from healthy donors were pre-incubated with increasing concentrations of heparin for different time periods and tested against pathogenic bacteria (Acinetobacter baumannii, Enterococcus faecium, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus) and endotoxins from E. coli, K. pneumoniae, and P. aeruginosa. Heparin dose-dependently decreased the activity of blood-derived AMCs. Consequently, pre-incubation with heparin led to increased activity of LPS and higher values of the pro-inflammatory cytokines tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6). Accordingly, higher concentrations of A. baumannii, E. coli, K. pneumoniae, and P. aeruginosa were observed as well. These findings underscore the neutralizing effect of unfractionated heparin on blood-derived AMCs in vitro and may lead to alternative affinity techniques for isolating and characterizing novel AMCs with the potential for clinical translation.


Asunto(s)
Antiinfecciosos , Heparina , Heparina/farmacología , Escherichia coli , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Endotoxinas/farmacología , Klebsiella pneumoniae
3.
Sci Rep ; 14(1): 6419, 2024 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-38494537

RESUMEN

Extracellular vesicles (EVs) have crucial roles in hemostasis and coagulation. They sustain coagulation by exposing phosphatidylserine and initiate clotting by surface expression of tissue factor (TF) under inflammatory conditions. As their relevance as biomarkers of coagulopathy is increasingly recognized, there is a need for the sensitive and reliable detection of TF+ EVs, but their flow cytometric analysis is challenging and has yielded controversial findings for TF expression on EVs in the vascular system. We investigated the effect of different fluorochrome-to-protein (F/P) ratios of anti-TF-fluorochrome conjugates on the flow cytometric detection of TF+ EVs from activated monocytes, mesenchymal stem cells (MSCs), and in COVID-19 plasma. Using a FITC-labeled anti-TF antibody (clone VD8), we show that the percentage of TF+ EVs declined with decreasing F/P ratios. TF was detected on 7.6%, 5.4%, and 1.1% of all EVs derived from activated monocytes at F/P ratios of 7.7:1, 6.6:1, and 5.2:1. A similar decline was observed for EVs from MSCs and for EVs in plasma, whereas the detection of TF on cells remained unaffected by different F/P ratios. We provide clear evidence that next to the antibody clone, the F/P ratio affects the flow cytometric detection of TF+ EVs and should be carefully controlled.


Asunto(s)
Vesículas Extracelulares , Tromboplastina , Tromboplastina/metabolismo , Colorantes Fluorescentes/metabolismo , Coagulación Sanguínea , Vesículas Extracelulares/metabolismo
4.
Transfus Apher Sci ; 63(2): 103893, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38485612
5.
Transfus Apher Sci ; 63(2): 103891, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38336556

RESUMEN

The use of blood and blood products can be life-saving, but there are also certain risks associated with their administration and use. Packed red blood cells (pRBCs) and platelet concentrates are the most commonly used blood products in transfusion medicine to treat anemia or acute and chronic bleeding disorders, respectively. During the production and storage of blood products, red blood cells and platelets release extracellular vesicles (EVs) as a result of the storage lesion, which may affect product quality. EVs are subcellular structures enclosed by a lipid bilayer and originate from the endosomal system or from the plasma membrane. They play a pivotal role in intercellular communication and are emerging as important regulators of inflammation and coagulation. Their cargo and their functional characteristics depend on the cell type from which they originate, as well as on their microenvironment, influencing their capacity to promote coagulation and inflammatory responses. Hence, the potential involvement of EVs in transfusion-related adverse events is increasingly recognized and studied. Here, we review the knowledge regarding the effect of production and storage conditions of pRBCs and platelet concentrates on the release of EVs. In this context, the mode of processing and anticoagulation, the influence of additive solutions and leukoreduction, as well as the storage duration will be addressed, and we discuss potential implications of EVs for the clinical outcome of transfusion.


Asunto(s)
Anemia , Vesículas Extracelulares , Humanos , Plaquetas , Transfusión Sanguínea , Eritrocitos/metabolismo , Vesículas Extracelulares/metabolismo , Conservación de la Sangre/métodos
6.
Transfus Apher Sci ; 63(2): 103894, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38360511
7.
Biotechnol Lett ; 46(2): 279-293, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38349512

RESUMEN

PURPOSE: 3D cell culture and hypoxia have been demonstrated to increase the therapeutic effects of mesenchymal stem/stromal cells (MSCs)-derived extracellular vesicles (EVs). In this study, a process for the production of MSC-EVs in a novel 3D bioreactor system under normoxic and hypoxic conditions was established and the resulting EVs were characterized. METHODS: Human adipose-derived MSCs were seeded and cultured on a 3D membrane in the VITVO® bioreactor system for 7 days. Afterwards, MSC-EVs were isolated and characterized via fluorescence nanoparticle tracking analysis, flow cytometry with staining against annexin V (Anx5) as a marker for EVs exposing phosphatidylserine, as well as CD73 and CD90 as MSC surface markers. RESULTS: Cultivation of MSC in the VITVO® bioreactor system demonstrated a higher concentration of MSC-EVs from the 3D bioreactor (9.1 × 109 ± 1.5 × 109 and 9.7 × 109 ± 3.1 × 109 particles/mL) compared to static 2D culture (4.2 × 109 ± 7.5 × 108 and 3.9 × 109 ± 3.0 × 108 particles/mL) under normoxic and hypoxic conditions, respectively. Also, the particle-to-protein ratio as a measure for the purity of EVs increased from 3.3 × 107 ± 1.1 × 107 particles/µg protein in 2D to 1.6 × 108 ± 8.3 × 106 particles/µg protein in 3D. Total MSC-EVs as well as CD73-CD90+ MSC-EVs were elevated in 2D normoxic conditions. The EV concentration and size did not differ significantly between normoxic and hypoxic conditions. CONCLUSION: The production of MSC-EVs in a 3D bioreactor system under hypoxic conditions resulted in increased EV concentration and purity. This system could be especially useful in screening culture conditions for the production of 3D-derived MSC-EVs.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Humanos , Vesículas Extracelulares/metabolismo , Reactores Biológicos
8.
Sci Rep ; 14(1): 2410, 2024 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-38287051

RESUMEN

The determination of lipopolysaccharide (endotoxin) in serum or plasma samples using Limulus amebocyte lysate (LAL)-based assays is currently not sufficiently reliable in clinical diagnostics due to numerous interfering factors that strongly reduce the recovery of LPS in clinical samples. The specific plasma components responsible for the endotoxin neutralizing capacity of human blood remain to be identified. There are indications that certain endotoxin-neutralizing proteins or peptides, which are part of the host defense peptides/proteins of the innate immune system may be responsible for this effect. Based on our finding that several antimicrobial peptides can be neutralized by the polyanion heparin, we developed a heparin-containing diluent for serum and plasma samples, which enables reliable quantification of LPS measurement in clinical samples using the LAL assay. In a preclinical study involving 40 donors, this improved protocol yielded an over eightfold increase in LPS recovery in serum samples, as compared to the standard protocol. This modified protocol of sample pretreatment could make LPS measurement a valuable tool in medical diagnostics.


Asunto(s)
Endotoxinas , Cangrejos Herradura , Animales , Humanos , Lipopolisacáridos , Prueba de Limulus/métodos , Heparina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA