Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 300(1): 105561, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38097183

RESUMEN

Chronic inflammation is the underlying cause of many diseases, including type 1 diabetes, obesity, and non-alcoholic fatty liver disease. Macrophages are continuously recruited to tissues during chronic inflammation where they exacerbate or resolve the pro-inflammatory environment. Although leukotriene B4 receptor 2 (BLT2) has been characterized as a low affinity receptor to several key eicosanoids and chemoattractants, its precise roles in the setting of inflammation and macrophage function remain incompletely understood. Here we used zebrafish and mouse models to probe the role of BLT2 in macrophage function during inflammation. We detected BLT2 expression in bone marrow derived and peritoneal macrophages of mouse models. Transcriptomic analysis of Ltb4r2-/- and WT macrophages suggested a role for BLT2 in macrophage migration, and studies in vitro confirmed that whereas BLT2 does not mediate macrophage polarization, it is required for chemotactic function, possibly mediated by downstream genes Ccl5 and Lgals3. Using a zebrafish model of tailfin injury, we demonstrated that antisense morpholino-mediated knockdown of blt2a or chemical inhibition of BLT2 signaling impairs macrophage migration. We further replicated these findings in zebrafish models of islet injury and liver inflammation. Moreover, we established the applicability of our zebrafish findings to mammals by showing that macrophages of Ltb4r2-/- mice have defective migration during lipopolysaccharide stimulation in vivo. Collectively, our results demonstrate that BLT2 mediates macrophage migration during inflammation, which implicates it as a potential therapeutic target for inflammatory pathologies.


Asunto(s)
Movimiento Celular , Macrófagos , Receptores de Leucotrieno B4 , Animales , Ratones , Inflamación/genética , Inflamación/metabolismo , Leucotrieno B4/genética , Leucotrieno B4/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Receptores de Leucotrieno B4/genética , Receptores de Leucotrieno B4/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
3.
Am J Physiol Renal Physiol ; 317(2): F489-F501, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31188034

RESUMEN

Citrate is critical for acid-base homeostasis and to prevent calcium nephrolithiasis. Both metabolic acidosis and hypokalemia decrease citrate excretion and increase expression of Na+-dicarboxylate cotransporter 1 (NaDC1; SLC13A2), the primary protein involved in citrate reabsorption. However, the mechanisms transducing extracellular signals and mediating these responses are incompletely understood. The purpose of the present study was to determine the role of the Na+-coupled electrogenic bicarbonate cotransporter (NBCe1) A variant (NBCe1-A) in citrate metabolism under basal conditions and in response to acid loading and hypokalemia. NBCe1-A deletion increased citrate excretion and decreased NaDC1 expression in the proximal convoluted tubules (PCT) and proximal straight tubules (PST) in the medullary ray (PST-MR) but not in the PST in the outer medulla (PST-OM). Acid loading wild-type (WT) mice decreased citrate excretion. NaDC1 expression increased only in the PCT and PST-MR and not in the PST-MR. In NBCe1-A knockout (KO) mice, the acid loading change in citrate excretion was unaffected, changes in PCT NaDC1 expression were blocked, and there was an adaptive increase in PST-MR. Hypokalemia in WT mice decreased citrate excretion; NaDC1 expression increased only in the PCT and PST-MR. NBCe1-A KO blocked both the citrate and NaDC1 changes. We conclude that 1) adaptive changes in NaDC1 expression in response to metabolic acidosis and hypokalemia occur specifically in the PCT and PST-MR, i.e., in cortical proximal tubule segments; 2) NBCe1-A is necessary for normal basal, metabolic acidosis and hypokalemia-stimulated citrate metabolism and does so by regulating NaDC1 expression in cortical proximal tubule segments; and 3) adaptive increases in PST-OM NaDC1 expression occur in NBCe1-A KO mice in response to acid loading that do not occur in WT mice.


Asunto(s)
Citratos/orina , Transportadores de Ácidos Dicarboxílicos/biosíntesis , Transportadores de Ácidos Dicarboxílicos/genética , Transportadores de Anión Orgánico Sodio-Dependiente/biosíntesis , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Simportadores/biosíntesis , Simportadores/genética , Acidosis/metabolismo , Animales , Dieta , Femenino , Variación Genética , Hipopotasemia/metabolismo , Inmunohistoquímica , Médula Renal/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
4.
Am J Physiol Renal Physiol ; 315(2): F211-F222, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29561185

RESUMEN

Renal ammonia metabolism has a major role in the maintenance of acid-base homeostasis. Sex differences are well recognized as an important biological variable in many aspects of renal function, including fluid and electrolyte metabolism. However, sex differences in renal ammonia metabolism have not been previously reported. Therefore, the purpose of the current study was to investigate sex differences in renal ammonia metabolism. We studied 4-mo-old wild-type C57BL/6 mice fed a normal diet. Despite similar levels of food intake, and, thus, protein intake, which is the primary determinant of endogenous acid production, female mice excreted greater amounts of ammonia, but not titratable acids, than did male mice. This difference in ammonia metabolism was associated with fundamental structural differences between the female and male kidney. In the female mouse kidney, proximal tubules account for a lower percentage of the renal cortical parenchyma compared with the male kidney, whereas collecting ducts account for a greater percentage of the renal parenchyma than in male kidneys. To further investigate the mechanism(s) behind the greater ammonia excretion in female mice, we examined differences in the expression of proteins involved in renal ammonia metabolism and transport. Greater basal ammonia excretion in females was associated with greater expression of PEPCK, glutamine synthetase, NKCC2, Rhbg, and Rhcg than was observed in male mice. We conclude that there are sex differences in basal ammonia metabolism that involve both renal structural differences and differences in expression of proteins involved in ammonia metabolism.


Asunto(s)
Amoníaco/metabolismo , Riñón/metabolismo , Eliminación Renal , Animales , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Femenino , Regulación de la Expresión Génica , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Riñón/anatomía & histología , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Ratones Endogámicos C57BL , Fosfoenolpiruvato Carboxiquinasa (ATP)/genética , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Factores Sexuales , Miembro 1 de la Familia de Transportadores de Soluto 12/genética , Miembro 1 de la Familia de Transportadores de Soluto 12/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...