Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Inorg Biochem ; 195: 194-200, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30981030

RESUMEN

The bacterial CopC family of proteins are periplasmic copper binding proteins that act in copper detoxification. These proteins contain Cu(I) and/or Cu(II) binding sites, with the family that binds Cu(II) only the most prevalent, based on sequence analyses. Here we present three crystal structures of the CopC protein from Pseudomonas fluorescens (Pf-CopC) that include the wild type protein bound to Cu(II) and two variant proteins, where Cu(II) coordinating ligands were mutated, in Cu-free states. We show that the Cu(II) atom in Pf-CopC is coordinated by two His residues, an Asp residue and the N-terminus of the protein (therefore a 3N + O site). This coordination structure is consistent with all structurally characterized proteins from the CopC family to date. Structural and sequence analyses of the CopC family allow a relationship between protein sequence and the Cu(II) binding affinity of these proteins to be proposed.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cobre/metabolismo , Pseudomonas fluorescens/química , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Cobre/química , Cristalografía por Rayos X , Ligandos , Mutación , Unión Proteica , Conformación Proteica , Alineación de Secuencia
2.
J Mol Biol ; 431(2): 158-177, 2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30552876

RESUMEN

The tripeptide glutathione (GSH) and its oxidized form glutathione disulfide (GSSG) constitute a key redox couple in cells. In particular, they partner protein thiols in reversible thiol-disulfide exchange reactions that act as switches in cell signaling and redox homeostasis. Disruption of these processes may impair cellular redox signal transduction and induce redox misbalances that are linked directly to aging processes and to a range of pathological conditions including cancer, cardiovascular diseases and neurological disorders. Glutaredoxins are a class of GSH-dependent oxidoreductase enzymes that specifically catalyze reversible thiol-disulfide exchange reactions between protein thiols and the abundant thiol pool GSSG/GSH. They protect protein thiols from irreversible oxidation, regulate their activities under a variety of cellular conditions and are key players in cell signaling and redox homeostasis. On the other hand, they may also function as metal-binding proteins with a possible role in the cellular homeostasis and metabolism of essential metals copper and iron. However, the molecular basis and underlying mechanisms of glutaredoxin action remain elusive in many situations. This review focuses specifically on these aspects in the context of recent developments that illuminate some of these uncertainties.


Asunto(s)
Disulfuros/metabolismo , Glutarredoxinas/metabolismo , Glutatión/metabolismo , Proteínas/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Animales , Catálisis , Homeostasis/fisiología , Humanos , Oxidación-Reducción , Transducción de Señal/fisiología
3.
Biochemistry ; 57(28): 4165-4176, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29894164

RESUMEN

A manifestation of Alzheimer's disease (AD) is the aggregation in the brain of amyloid ß (Aß) peptides derived from the amyloid precursor protein (APP). APP has been linked to modulation of normal copper homeostasis, while dysregulation of Aß production and clearance has been associated with disruption of copper balance. However, quantitative copper chemistry on APP is lacking, in contrast to the plethora of copper chemistry available for Aß peptides. The soluble extracellular protein domain sAPPα (molar mass including post-translational modifications of ∼100 kDa) has now been isolated in good yield and high quality. It is known to feature several copper binding sites with different affinities. However, under Cu-limiting conditions, it binds either Cu(I) or Cu(II) with picomolar affinity at a single site (labeled M1) that is located within the APP E2 subdomain. M1 in E2 was identified previously by X-ray crystallography as a Cu(II) site that features four histidine side chains (H313, H386, H432, and H436) as ligands. The presence of CuII(His)4 is confirmed in solution at pH ≤7.4, while Cu(I) binding involves either the same ligands or a subset. The binding affinities are pH-dependent, and the picomolar affinities for both Cu(I) and Cu(II) at pH 7.4 indicate that either oxidation state may be accessible under physiological conditions. Redox activity was observed in the presence of an electron donor (ascorbate) and acceptor (dioxygen). A critical analysis of the potential biological implications of these findings is presented.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Cobre/metabolismo , Precursor de Proteína beta-Amiloide/química , Sitios de Unión , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Albúmina Sérica Humana/química , Albúmina Sérica Humana/metabolismo
4.
Chem Sci ; 9(5): 1173-1183, 2018 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-29675162

RESUMEN

Glutaredoxins (Grxs) are a family of glutathione (GSH)-dependent thiol-disulfide oxidoreductases. They feature GSH-binding sites that directly connect the reversible redox chemistry of protein thiols to the abundant cellular nonprotein thiol pool GSSG/GSH. This work studied the pathways for oxidation of protein dithiols P(SH)2 and reduction of protein disulfides P(SS) catalyzed by Homo sapiens HsGrx1 and Escherichia coli EcGrx1. The metal-binding domain HMA4n(SH)2 was chosen as substrate as it contains a solvent-exposed CysCys motif. Quenching of the reactions with excess iodoacetamide followed by protein speciation analysis via ESI-MS allowed interception and characterization of both substrate and enzyme intermediates. The enzymes shuttle between three catalytically-competent forms (Grx(SH)(S-), Grx(SH)(SSG) and Grx(SS)) and employ conserved parallel monothiol and dithiol mechanisms. Experiments with dithiol and monothiol versions of both Grx enzymes demonstrate which monothiol (plus GSSG or GSH) or dithiol pathways dominate a specific oxidation or reduction reaction. Grxs are shown to be a class of versatile enzymes with diverse catalytic functions that are driven by specific interactions with GSSG/GSH.

5.
Eur J Mass Spectrom (Chichester) ; 24(1): 43-48, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29233003

RESUMEN

Two gas-phase catalytic cycles involving C-F bond activation of trifluoroethanol and trifluoroacetic acid were detected by multistage mass spectrometry experiments. A binuclear dimolybdate centre [Mo2O6(F)]- acts as the catalyst in each cycle. The first cycle, entered via the reaction of [Mo2O6(OH)]- with trifluoroethanol and elimination of water to form [Mo2O6(OCH2CF3)]-, proceeds via four steps: (1) oxidation of the alkoxo ligand and its elimination as aldehyde; (2) reaction of [Mo2O5(OH)]- with trifluoroethanol and elimination of water to form [Mo2O5(OCH2CF3)]; (3) decomposition of the alkoxo ligand via loss of 1,1 difluoroethene; and (4) reaction of [Mo2O6(F)]- with a second equivalent of trifluoroethanol to regenerate Mo2O6(OCH2CF3)]-. Steps (2) and (3) do not occur at room temperature and require collisional activation to proceed. The second cycle is entered via the reaction of [Mo2O6(OH)]- with trifluoroacetic acid and elimination of water to form [Mo2O6(O2CCF3)]- and involves two steps only: (1) fluoride transfer to a molybdenum centre to form [Mo2O6(F)]-; (2) reaction of [Mo2O6(F)]- with trifluoroacetic acid and loss of water to regenerate [Mo2O6(O2CCF3)]-. Comparisons are made with the chemistry of [Mo2O6(OH)]- reacting with acetic acid.

6.
Metallomics ; 10(1): 108-119, 2018 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-29215101

RESUMEN

The extracellular domain E2 of the amyloid precursor protein (APP) features a His-rich metal-binding site (denoted as the M1 site). In conjunction with surrounding basic residues, the site participates in interactions with components of the extracellular matrix including heparins, a class of negatively charged polysaccharide molecules of varying length. This work studied the chemistry of Cu(i) binding to APP E2 with the probe ligands Bcs, Bca, Fz and Fs. APP E2 forms a stable Cu(i)-mediated ternary complex with each of these anionic ligands. The complex with Bca was selected for isolation and characterization and was demonstrated, by native ESI-MS analysis, to have the stoichiometry E2 : Cu(i) : Bca = 1 : 1 : 1. Formation of these ternary complexes is specific for the APP E2 domain and requires Cu(i) coordination to the M1 site. Mutation of the M1 site was consistent with the His ligands being part of the E2 ligand set. It is likely that interactions between the negatively charged probe ligands and a positively charged patch on the surface of APP E2 are one aspect of the generation of the stable ternary complexes. Their formation prevented meaningful quantification of the affinity of Cu(i) binding to the M1 site with these probe ligands. However, the ternary complexes are disrupted by heparin, allowing reliable determination of a picomolar Cu(i) affinity for the E2/heparin complex with the Fz or Bca probe ligands. This is the first documented example of the formation of stable ternary complexes between a Cu(i) binding protein and a probe ligand. The ready disruption of the complexes by heparin identified clear 'tell-tale' signs for diagnosis of ternary complex formation and allowed a systematic review of conditions and criteria for reliable determination of affinities for metal binding via ligand competition. This study also provides new insights into a potential correlation of APP functions regulated by copper binding and heparin interaction.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Cobre/metabolismo , Heparina/metabolismo , Metaloproteínas/metabolismo , Precursor de Proteína beta-Amiloide/química , Sitios de Unión , Complejos de Coordinación/química , Complejos de Coordinación/metabolismo , Cobre/química , Cristalografía por Rayos X , Heparina/química , Humanos , Ligandos , Metaloproteínas/química , Unión Proteica , Dominios Proteicos
7.
Biochem J ; 474(22): 3799-3815, 2017 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-28963348

RESUMEN

Glutaredoxins (Grxs) are a class of GSH (glutathione)-dependent thiol-disulfide oxidoreductase enzymes. They use the cellular redox buffer GSSG (glutathione disulfide)/GSH directly to catalyze these exchange reactions. Grxs feature dithiol active sites and can shuttle rapidly between three oxidation states, namely dithiol Grx(SH)2, mixed disulfide Grx(SH)(SSG) and oxidized disulfide Grx(SS). Each is characterized by a distinct standard reduction potential [Formula: see text] The [Formula: see text] values for the redox couple Grx(SS)/Grx(SH)2 are available, but a recent estimate differs by over 100 mV from the literature values. No estimates are available for [Formula: see text] for the mixed disulfide couple Grx(SH)(SSG)/(Grx(SH)2 + GSH). This work determined both [Formula: see text] and [Formula: see text] for two representative Grx enzymes, Homo sapiens HsGrx1 and Escherichia coli EcGrx1. The empirical approaches were verified rigorously to overcome the sensitivity of these redox-labile enzymes to experimental conditions. The classic method of acid 'quenching' was demonstrated to shift the thiol-disulfide redox equilibria. Both enzymes exhibit an [Formula: see text] (vs. SHE) at a pH of 7.0. Their [Formula: see text] values (-213 and -230 mV for EcGrx1 and HsGrx1, respectively) are slightly less negative than that ([Formula: see text]) of the redox buffer GSSG/2GSH. Both [Formula: see text] and [Formula: see text] vary with log [GSH], but the former more sensitively by a factor of 2. This confers dual catalytic functions to a Grx enzyme as either an oxidase at low [GSH] or as a reductase at high [GSH]. Consequently, these enzymes can participate efficiently in either glutathionylation or deglutathionylation. The catalysis is demonstrated to proceed via a monothiol ping-pong mechanism relying on a single Cys residue only in the dithiol active site.


Asunto(s)
Disulfuros/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Glutarredoxinas/química , Glutatión/química , Disulfuros/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Glutatión/metabolismo , Humanos , Oxidación-Reducción
8.
Inorg Chem ; 56(9): 5275-5284, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28414228

RESUMEN

Ceruloplasmin (Cp) is one of the most complex multicopper oxidase enzymes and plays an essential role in the metabolism of iron in mammals. Ferrous ion supplied by the ferroportin exporter is converted by Cp to ferric ion that is accepted by plasma metallo-chaperone transferrin. Study of the enzyme at the atomic and molecular level has been hampered by the lack of a suitable ferrous substrate. We have developed the classic chromophoric complex FeIIHx(Tar)2 (H2Tar, 4-(2-thiazolylazo)resorcinol; x = 0-2; overall charge omitted) as a robust substrate for evaluation of the ferroxidase function of Cp and related enzymes. The catalysis can be followed conveniently in real time by monitoring the solution absorbance at 720 nm, a fingerprint of FeIIHx(Tar)2. The complex is oxidized to its ferric form FeIIIHx(Tar)2 via the overall reaction sequence FeIIHx(Tar)2 → FeII-Cp → FeIII-Cp → FeIIIHx(Tar)2: i.e., Fe(II) is transferred formally from FeIIHx(Tar)2 to the substrate docking/oxidation (SDO) site(s) in Cp, followed by oxidation to product Fe(III) that is trapped again by the ligand. Each Tar ligand in the above bis-complex coordinates the metal center in a meridional tridentate mode involving a pH-sensitive -OH group (pKa > 12), and this imposes rapid Fe(II) and Fe(III) transfer kinetics to facilitate the catalytic process. The formation constants of both the ferrous and ferric complexes at pH 7.0 were determined (log ß2' = 13.6 and 21.6, respectively), as well as an average dissociation constant of the SDO site(s) in Cp (log KD' = -7.2).


Asunto(s)
Ceruloplasmina/análisis , Complejos de Coordinación/química , Pruebas de Enzimas/métodos , Compuestos Ferrosos/química , Compuestos Azo/química , Catálisis , Ceruloplasmina/química , Compuestos Férricos/química , Concentración de Iones de Hidrógeno , Hierro/química , Cinética , Ligandos , Oxidación-Reducción , Resorcinoles/química , Temperatura
9.
J Am Chem Soc ; 139(12): 4266-4269, 2017 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-28272878

RESUMEN

Cu-ATPases are membrane copper transporters present in all kingdoms of life. They play a central role in Cu homeostasis by pumping Cu ions across cell membranes with energy derived from ATP hydrolysis. In this work, the Cu-ATPase CopA from Escherichia coli was expressed and purified in fully functional form and demonstrated to bind Cu(I) with subfemtomolar affinity. It was incorporated into the lipid membrane of giant unilamellar vesicles (GUVs) whose dimensions match those of eukaryotic cells. An 1H NMR approach provided a quantitative ATPase activity assay for the enzyme either dissolved in detergent or embedded in GUV membranes. The activity varied with the Cu(I) availability in an optimized assay solution for either environment, demonstrating a direct correlation between ATPase activity and Cu(I) transport. Quantitative analysis of the Cu content trapped by the GUVs is consistent with a Cu:ATP turnover ratio of 1.


Asunto(s)
ATPasas Transportadoras de Cobre/metabolismo , Cobre/metabolismo , Escherichia coli/enzimología , ATPasas Transportadoras de Cobre/química , Transporte Iónico
10.
Metallomics ; 9(3): 278-291, 2017 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-28145544

RESUMEN

The metal-binding sites of Aß peptides are dictated primarily by the coordination preferences of the metal ion. Consequently, Cu(i) is typically bound with two His ligands in a linear mode while Cu(ii) forms a pseudo-square planar stereochemistry with the N-terminal amine nitrogen acting as an anchoring ligand. Several distinct combinations of other groups can act as co-ligands for Cu(ii). A population of multiple binding modes is possible with the equilibrium position shifting sensitively with solution pH and the nature of the residues in the N-terminal region. This work examined the Cu(ii) chemistry of the Aß16 peptide and several variants that targeted these binding modes. The results are consistent with: (i) at pH < 7.8, the square planar site in CuII-Aß16 consists primarily of a bidentate ligand provided by the carboxylate sidechain of Asp1 and the N-terminal amine supported by the imidazole sidechains of two His residues (designated here as component IA); it is in equilibrium with a less stable component IB in which the carboxylate ligand is substituted by the Asp1-Ala2 carbonyl oxygen. (ii) Both IA and IB convert to a common component II (apparent transition pKa ∼7.8 for IA and ∼6.5 for IB, respectively) featuring a tridentate ligand consisting of the N-terminal amine, the Asp1-Ala2 amide and the Ala2-Pro3 carbonyl; this stereochemistry is stabilized by two five-membered chelate rings. (iii) Component IA is stabilized for variant Aß16-D1H, components I (both IA and IB) are imposed on Aß16-A2P while the less stable IB is enforced on Aß16-D1A (which is converted to component II at pH ∼6.5); (iv) components IA and IB share two His ligands with Cu(i) and are more reactive in redox catalysis than component II that features a highly covalent and less reactive amide N- ligand. The redox activity of IA is further enhanced for peptides with a His1 N-terminus that may act as a ligand for either Cu(i) or Cu(ii) with lower re-organization energy required for redox-shuttling. This study provided insights into the determinants that regulate the reactivity of Cu-Aß complexes.


Asunto(s)
Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Cobre/química , Cobre/metabolismo , Ácido Ascórbico/química , Ácido Ascórbico/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Oxígeno/metabolismo , Unión Proteica
11.
J Inorg Biochem ; 162: 286-294, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26766000

RESUMEN

Quantitative characterization of metalloproteins at molecular and atomic levels generally requires tens of milligrams of highly purified samples, a situation frequently challenged by problems in generating unmodified native forms. A variety of affinity tags, such as the popular poly-histidine tag, have been developed to facilitate purification but they generally rely on expensive affinity resins and their presence may interfere with protein characterization. This paper documents that addition of a poly-lysine tag to the C-terminus enables, for the copper-binding proteins examined, ready purification in large scale via cost-effective cation-exchange chromatography. The tag may be removed readily by the enzyme carboxypeptidase B to generate the native protein with no extra residues. However, this cleavage step is normally not necessary since the poly-lysine tag is shown to have no detectable affinity for either Cu(I) or Cu(II) and imposes no interference to the copper binding properties of the target proteins. In contrast, the poly-histidine tag possesses a sub-picomolar affinity for Cu(I) and -nanomolar affinity for Cu(II) and may need to be removed for reliable characterization of the target proteins. These conclusions may be extended to the study of other metallo-proteins and metallo-enzymes.


Asunto(s)
Proteínas Portadoras/aislamiento & purificación , Cobre/química , Histidina/química , Polilisina/química , Proteínas Recombinantes de Fusión/aislamiento & purificación , Carboxipeptidasa B/química , Proteínas Portadoras/química , Proteínas Portadoras/genética , Cationes Bivalentes , Cationes Monovalentes , Cromatografía de Afinidad/métodos , Cromatografía por Intercambio Iónico/métodos , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Pseudomonas fluorescens/química , Pseudomonas fluorescens/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Coloración y Etiquetado/métodos
12.
Metallomics ; 7(3): 567-78, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25715324

RESUMEN

Reliable quantification of copper binding affinities and identification of the binding sites provide a molecular basis for an understanding of the nutritional roles and toxic effects of copper ions. Sets of chromophoric probes are now available that can quantify Cu(i) binding affinities from nanomolar to attomolar concentrations on a unified scale under in vitro conditions. Equivalent probes for Cu(ii) are lacking. This work reports development of a set of four fluorescent dansyl peptide probes (DP1-4) that can quantify Cu(ii) binding affinities from micromolar to femtomolar concentrations, also on a unified scale. The probes were constructed by conjugation of a dansyl group to four short peptides of specific design. Each was characterised by its dissociation constant KD, its pH dependence and the nature of its binding site. One equivalent of Cu(ii) is bound by the individual probes that display different and well-separated affinities at pH 7.4 (log KD = -8.1, -10.1, -12.3 and -14.1, respectively). Intense fluorescence is emitted at λmax ∼ 550 nm upon excitation at ∼330 nm. Binding of Cu(ii) quenches the fluorescence intensity linearly until one equivalent of Cu(ii) is bound. Multiple approaches and multiple affinity standards were employed to ensure reliability. Selected examples of application to well-characterised Cu(ii) binding peptides and proteins are presented. These include Aß16 peptides, two naturally occurring Cu(ii)-chelating motifs in human serum and cerebrospinal fluid with sequences GHK and DAHK and two copper binding proteins, CopC from Pseudomonas syringae and PcoC from Escherichia coli. Previously reported affinities are reproduced, demonstrating that peptides DP1-4 form a set of robust and reliable probes for Cu(ii) binding to peptides and protein targets.


Asunto(s)
Cobre/metabolismo , Colorantes Fluorescentes/metabolismo , Péptidos/metabolismo , Secuencia de Aminoácidos , Tampones (Química) , Cromatografía por Intercambio Iónico , Colorantes Fluorescentes/química , Humanos , Cinética , Ligandos , Datos de Secuencia Molecular , Péptidos/química
13.
Inorg Chem ; 54(6): 2950-9, 2015 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-25710712

RESUMEN

Copper homeostasis in the bacterium Pseudomonas fluorescens SBW25 appears to be mediated mainly via chromosomal cue and cop systems. Under elevated copper levels that induce stress, the cue system is activated for expression of a P1B-type ATPase to remove excess copper from the cytosol. Under copper-limiting conditions, the cop system is activated to express two copper uptake proteins, Pf-CopCD, to import this essential nutrient. Pf-CopC is a periplasmic copper chaperone that may donate copper to the inner membrane transporter Pf-CopD for active copper importation. A database search revealed that Pf-CopC belongs to a new family of CopC proteins (designated Type B in this work) that differs significantly from the known CopC proteins of Type A that possess two separated binding sites specific for Cu(I) and Cu(II). This article reports the isolation and characterization of Pf-CopC and demonstrates that it lacks a Cu(I) binding site and possesses a novel Cu(II) site that binds Cu(II) with 100 times stronger affinity than do the Type A proteins. Presumably, this is a requirement for a copper uptake role under copper-limiting conditions. The Cu(II) site incorporates a highly conserved amino terminal copper and nickel (ATCUN) binding motif, NH2-Xxx-Xxx-His, but the anticipated ATCUN binding mode is prevented by a thermodynamically more favorable binding mode comprising His1 as a key bidentate ligand and His3 and His85 as co-ligands. However, upon His1 mutation, the ATCUN binding mode is adopted. This work demonstrates how a copper chaperone may fine tune its copper binding site to meet new challenges to its function.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Secuencia Conservada , Cobre/metabolismo , Pseudomonas fluorescens , Secuencia de Aminoácidos , Sitios de Unión , Concentración de Iones de Hidrógeno , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Termodinámica
14.
Metallomics ; 7(5): 776-85, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25679350

RESUMEN

CueO from Escherichia coli is a multicopper oxidase (MCO) involved in copper tolerance under aerobic conditions. It features the four typical copper atoms that act as electron transfer (T1) and dioxygen reduction (T2, T3; trinuclear) sites. In addition, it displays a methionine- and histidine-rich insert that includes a helix that blocks physical access to the T1 site. In crystalline form, the insert provides at least three additional Met-rich Cu(I) binding sites Cu5 (sCu), Cu6 and Cu7 that are proposed to facilitate rapid oxidation of bound Cu(I) to Cu(II) (S. K. Singh, et al., J. Biol. Chem., 2011, 43, 37849-37857). The activities of variants featuring mutations at sites Cu5 (D360M, M355LD360N), Cu6 (M358,362S), Cu7 (M364,368S) and Cu6,7 (M358,362,364,368S) were compared to that of the wild type form using three different air-stable model substrates (2,6-dimethoxyphenol, [Cu(I)(Bca)2](3-) and Cu(I)Cu(II)-PcoC, a periplasmic Cu(I) binding protein from E. coli). The results demonstrate that the three copper sites play related but distinct roles in CueO oxidase activities. The internal Cu5 site is part of the essential electron transfer pathway connecting surface-exposed sites Cu6 and Cu7 to site T1. Both Cu6 and Cu7 are dominant substrate-docking-oxidation (SDO) sites on the protein surface. However, under physiologically relevant conditions, the SDO function of Cu6 relies largely on an electron transfer pathway via Cu7 to Cu5. These Met-rich sites in CueO provide a robust cuprous oxidase function for control of Cu(I) toxicity.


Asunto(s)
Cobre/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Metionina/metabolismo , Oxidorreductasas/metabolismo , Sitios de Unión , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Modelos Moleculares , Monofenol Monooxigenasa/química , Monofenol Monooxigenasa/metabolismo , Mutación , Oxidorreductasas/química , Oxidorreductasas/genética , Conformación Proteica
15.
Metallomics ; 6(4): 793-808, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24522867

RESUMEN

Glutaredoxins have been characterised as enzymes regulating the redox status of protein thiols via cofactors GSSG/GSH. However, such a function has not been demonstrated with physiologically relevant protein substrates in in vitro experiments. Their active sites frequently feature a Cys-xx-Cys motif that is predicted not to bind metal ions. Such motifs are also present in copper-transporting proteins such as Atox1, a human cytosolic copper metallo-chaperone. In this work, we present the first demonstration that: (i) human glutaredoxin 1 (hGrx1) efficiently catalyses interchange of the dithiol and disulfide forms of the Cys(12)-xx-Cys(15) fragment in Atox1 but does not act upon the isolated single residue Cys(41); (ii) the direction of catalysis is regulated by the GSSG/2GSH ratio and the availability of Cu(I); (iii) the active site Cys(23)-xx-Cys(26) in hGrx1 can bind Cu(I) tightly with femtomolar affinity (K(D) = 10(-15.5) M) and possesses a reduction potential of E(o)' = -118 mV at pH 7.0. In contrast, the Cys(12)-xx-Cys(15) motif in Atox1 has a higher affinity for Cu(I) (K(D) = 10(-17.4) M) and a more negative potential (E(o)' = -188 mV). These differences may be attributed primarily to the very low pKa of Cys23 in hGrx1 and allow rationalisation of conclusion (ii) above: hGrx1 may catalyse the oxidation of Atox1(dithiol) by GSSG, but not the complementary reduction of the oxidised Atox1(disulfide) by GSH unless Cu(aq)(+) is present at a concentration that allows binding of Cu(I) to reduced Atox1 but not to hGrx1. In fact, in the latter case, the catalytic preferences are reversed. Both Cys residues in the active site of hGrx1 are essential for the high affinity Cu(I) binding but the single Cys(23) residue only is required for the redox catalytic function. The molecular properties of both Atox1 and hGrx1 are consistent with a correlation between copper homeostasis and redox sulfur chemistry, as suggested by recent cell experiments. These proteins appear to have evolved the features necessary to fill multiple roles in redox regulation, Cu(I) buffering and Cu(I) transport.


Asunto(s)
Cobre/metabolismo , Glutarredoxinas/metabolismo , Glutatión/metabolismo , Metalochaperonas/metabolismo , Azufre/metabolismo , Cobre/química , Proteínas Transportadoras de Cobre , Glutarredoxinas/química , Glutatión/química , Humanos , Metalochaperonas/química , Modelos Moleculares , Chaperonas Moleculares , Oxidación-Reducción , Azufre/química , Termodinámica
16.
Metallomics ; 6(3): 505-17, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24493126

RESUMEN

A new fluorescent probe Aß16wwa based upon the Aß16 peptide has been developed with two orders of magnitude greater fluorescence intensity for sensitive detection of interactions with Cu(II). In combination with the Cu(I) probe Ferene S, it is confirmed that the Aß16 peptide binds either Cu(I) or Cu(II) with comparable affinities at pH 7.4 (log K = -10.4; log K = -10.0). It follows from this property that the Cu-Aß16 complex is a robust if slow catalyst for the aerial oxidation of ascorbate with H2O2 as primary product (initial rate, ∼0.63 min(-1) for Cu-Aß16 versus >2.5 min(-1) for Cuaq(2+)). An integrated study of variants of this peptide identifies the major ligands and binding modes involved in its copper complexes in solution. The dependence of K upon pH is consistent with a two-coordinate Cu(I) site in which dynamic processes exchange Cu(I) between the three available pairs of imidazole sidechains provided by His6, His13 and His14. The N-terminal amine is not involved in Cu(I) binding but is a key ligand for Cu(II). Acetylation of the N-terminus alters the redox thermodynamic gradient for the Cu centre and suppresses its catalytic activity considerably. The data indicate the presence of dynamic processes that exchange Cu(II) between the three His ligands and backbone amide at physiological pH. His6 is identified as a key ligand for catalysis as its presence minimises the pre-organisation energy required for interchange of the two copper redox sites. These new thermodynamic data strengthen structural interpretations for the Cu-Aß complexes and provide valuable insights into the molecular mechanism by which copper chemistry may induce oxidative stress in Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Cobre/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Secuencia de Aminoácidos , Péptidos beta-Amiloides/química , Ácido Ascórbico/metabolismo , Sitios de Unión , Humanos , Peróxido de Hidrógeno/metabolismo , Datos de Secuencia Molecular , Oxidación-Reducción , Estrés Oxidativo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Unión Proteica , Termodinámica
17.
J Biol Inorg Chem ; 19(4-5): 605-14, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24477945

RESUMEN

The orange protein (ORP) isolated from the sulfate-reducing bacterium Desulfovibrio gigas (11.8 kDa) contains a mixed-metal sulfide cluster of the type [S2MoS2CuS2MoS2](3-) noncovalently bound to the polypeptide chain. The D. gigas ORP was heterologously produced in Escherichia coli in the apo form. Different strategies were used to reconstitute the metal cluster into apo-ORP and obtain insights into the metal cluster synthesis: (1) incorporation of a synthesized inorganic analogue of the native metal cluster and (2) the in situ synthesis of the metal cluster on the addition to apo-ORP of copper chloride and tetrathiomolybdate or tetrathiotungstate. This latter procedure was successful, and the visible spectrum of the Mo-Cu reconstituted ORP is identical to the one reported for the native protein with absorption maxima at 340 and 480 nm. The (1)H-(15)N heteronuclear single quantum coherence spectra of the reconstituted ORP obtained by strategy 2, in contrast to strategy 1, exhibited large changes, which required sequential assignment in order to identify, by chemical shift differences, the residues affected by the incorporation of the cluster, which is stabilized inside the protein by both electrostatic and hydrophobic interactions.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cobre/metabolismo , Desulfovibrio gigas/metabolismo , Molibdeno/metabolismo , Proteínas Bacterianas/química , Cobre/química , Desulfovibrio gigas/química , Molibdeno/química
18.
Metallomics ; 6(1): 105-16, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24276282

RESUMEN

Aberrant regulation of transition metals and the resultant disregulation of neuronal reactive oxygen species (ROS) are considered significant in the etiology of Alzheimer's disease (AD). We determined the solution structure of the D2 domain of APL-1 (APL1-D2), the Caenorhabditis elegans ortholog of the amyloid precursor protein domain 2 (APP-D2). The copper binding affinities of APL1-D2 and APP-D2 were estimated and the ability of their copper complexes to promote formation of ROS was tested. The two protein domains are isostructural, consisting of a three-stranded ß-sheet packed against a short α-helix in a ßαßß fold. A six-residue insert in APL1-D2, absent in APP-D2, forms an extended loop. The putative copper binding ligands in APP-D2 are not conserved in APL1-D2 and this delineates a clear difference between them. APL1-D2 and APP-D2 bind one equivalent of Cu(I) weakly, with dissociation constants KD ∼10(-8.6) M and ~10(-10) M, respectively, and up to two equivalents of Cu(II) with KD values in the range 10(-6) -10(-8) M. The relative abilities of APL1-D2, APP-D2 and amyloid-ß (Aß) copper complexes to generate H2O2 correspond to their copper binding affinities. Copper affinities for Aß (KD ~ 10(-10) M for both Cu(I) and Cu(II)) and APP-D2 are in a range allowing redox cycling to occur, albeit less efficiently for APP-D2. However, APL1-D2 binds Cu(I) and Cu(II) too weakly to sustain catalysis which further suggests that it plays no significant role in copper handling in C. elegans. Overall, the data are consistent with a possible role in copper homeostasis for APP-D2, but not APL1-D2.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Cobre/metabolismo , Proteínas de la Membrana/metabolismo , Secuencia de Aminoácidos , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/genética , Animales , Unión Competitiva , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Cobre/química , Peróxido de Hidrógeno/metabolismo , Cinética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Modelos Químicos , Modelos Moleculares , Datos de Secuencia Molecular , Oxidación-Reducción , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Especies Reactivas de Oxígeno/metabolismo , Homología de Secuencia de Aminoácido
19.
Antioxidants (Basel) ; 3(2): 288-308, 2014 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-26784872

RESUMEN

Many neurodegenerative disorders involve the accumulation of multimeric assemblies and amyloid derived from misfolded conformers of constitutively expressed proteins. In addition, the brains of patients and experimental animals afflicted with prion disease display evidence of heightened oxidative stress and damage, as well as disturbances to transition metal homeostasis. Utilising a variety of disease model paradigms, many laboratories have demonstrated that copper can act as a cofactor in the antioxidant activity displayed by the prion protein while manganese has been implicated in the generation and stabilisation of disease-associated conformers. This and other evidence has led several groups to test dietary and chelation therapy-based regimens to manipulate brain metal concentrations in attempts to influence the progression of prion disease in experimental mice. Results have been inconsistent. This review examines published data on transition metal dyshomeostasis, free radical generation and subsequent oxidative damage in the pathogenesis of prion disease. It also comments on the efficacy of trialed therapeutics chosen to combat such deleterious changes.

20.
J Inorg Biochem ; 127: 232-7, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23829948

RESUMEN

In order to gain insights into the interplay between Cu(I) and Cu(II) in sulfur-rich protein environments, the first preparation and characterization of copper-substituted forms of the wild-type rubredoxin (Rd) from Desulfovibrio vulgaris Hildenborough are reported, as well as those of its variant C42A-Rd. The initial products appear to be tetrahedral Cu(I)(S-Cys)n species for the wild type (n=4) and the variant C42A (n=3, with an additional unidentified ligand). These species are unstable to aerial oxidation to products, whose properties are consistent with square planar Cu(II)(S-Cys)n species. These Cu(II) intermediates are susceptible to auto-reduction by ligand S-Cys to produce stable Cu(I) final products. The original Cu(I) center in the wild-type system can be regenerated by reduction, suggesting that the active site can accommodate Cu(I)(S-Cys)2 and Cys-S-S-Cys fragments in the final product. The absence of one S-Cys ligand prevents similar regeneration in the C42A-Rd system. These results emphasize the redox instability of Cu(II)-(S-Cys)n centers.


Asunto(s)
Cobre/química , Rubredoxinas/química , Variación Genética , Estructura Molecular , Rubredoxinas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...