Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
HNO ; 2024 May 18.
Artículo en Alemán | MEDLINE | ID: mdl-38761228

RESUMEN

Electrocochleography (ECochG) represents a promising approach for monitoring cochlear function during cochlear implantation and for investigating the causes of residual cochlear function loss after implantation. This paper provides an overview of the current research and application status of ECochG, both during and after cochlear implantation. Intraoperative ECochG can be conducted either via the implant itself or an extracochlear measuring electrode. Postoperative ECochG recordings are also feasible via the implant. Various studies have demonstrated that a significant decrease in ECochG amplitude during electrode insertion correlates with an increased risk of losing residual cochlear function, with critical cochlear events occurring primarily towards the end of the insertion. Postoperative data suggest that the loss of cochlear function mainly occurs in the early postoperative phase. Future research directions include the automation and objectification of signal analysis, as well as a more in-depth investigation into the underlying mechanisms of these signal changes.

3.
Otol Neurotol ; 45(4): e271-e280, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38346807

RESUMEN

OBJECTIVES: The aim of this study is to improve our understanding of the mechanics involved in the insertion of lateral wall cochlear implant electrode arrays. DESIGN: A series of 30 insertion experiments were conducted by three experienced surgeons. The experiments were carried out in a previously validated artificial temporal bone model according to established soft surgery guidelines. The use of an in vitro setup enabled us to comprehensively evaluate relevant parameters, such as insertion force, intracochlear pressure, and exact electrode array position in a controlled and repeatable environment. RESULTS: Our findings reveal that strong intracochlear pressure transients are more frequently caused during the second half of the insertion, and that regrasping the electrode array is a significant factor in this phenomenon. For choosing an optimal insertion speed, we show that it is crucial to balance slow movement to limit intracochlear stress with short duration to limit tremor-induced pressure spikes, challenging the common assumption that a slower insertion is inherently better. Furthermore, we found that intracochlear stress is affected by the order of execution of postinsertion steps, namely sealing the round window and posterior tympanotomy with autologous tissue and routing of the excess cable into the mastoid cavity. Finally, surgeons' subjective estimates of physical parameters such as speed, smoothness, and resistance did not correlate with objectively assessed measures, highlighting that a thorough understanding of intracochlear mechanics is essential for an atraumatic implantation. CONCLUSION: The results presented in this article allow us to formulate evidence-based surgical recommendations that may ultimately help to improve surgical outcome and hearing preservation in cochlear implant patients.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Humanos , Implantación Coclear/métodos , Cóclea/cirugía , Ventana Redonda/cirugía , Hueso Temporal/cirugía , Electrodos Implantados
4.
Eur Arch Otorhinolaryngol ; 281(1): 67-74, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37378725

RESUMEN

OBJECTIVE: To evaluate the long-term outcomes of trans-mastoid plugging of superior semicircular canal dehiscence (SSCD), focusing on complicated cases. METHODS: In this cohort study, we included all patients who underwent trans-mastoid plugging of SSCD between 2009 and 2019. We evaluated the symptoms (autophony, sound-/pressure-induced vertigo, disequilibrium, aural fullness and pulsatile tinnitus) before and 1 year after surgery in the medical records. We systematically assessed the current symptoms 6.2 ± 3 years postoperative (range 2.2-12.3 years) using questionnaires sent by post and validated by telephone interviews. We also documented any complications and the need for further procedures. We compared pure tone and speech audiometry before and 1 year after surgery. Finally, the degree of mastoid pneumatisation and mastoid tegmen anatomy were reviewed on preoperative CT scans. RESULTS: We included 24 ears in 23 patients. No complications were recorded, and none required a second procedure for SSCD. Following surgery, oscillopsia and Tullio phenomena resolved in all patients. Hyperacusis, autophony, and aural fullness were also settled in all patients except one. Balance impairment persisted to some degree in 35% of patients. No deterioration over the years was reported regarding the above symptoms. On average, bone conduction pure tone average pre- and 1 year postoperative were 13.7 ± 17 and 20.5 ± 18 dB, respectively (P = 0.002). Air bone gaps were reduced from 12.7 ± 8 to 5.9 ± 6 (P = 0.001). Two patients had a significant sclerotic mastoid, three had a prominent low-lying mastoid tegmen, and two had both. Anatomy had no effect on outcome. CONCLUSION: Trans-mastoid plugging of SSCD is a reliable and effective technique which achieves long-lasting symptom control, even in cases with sclerotic mastoid or low-lying mastoid tegmen.


Asunto(s)
Apófisis Mastoides , Dehiscencia del Canal Semicircular , Humanos , Apófisis Mastoides/diagnóstico por imagen , Apófisis Mastoides/cirugía , Estudios de Cohortes , Dehiscencia del Canal Semicircular/complicaciones , Estudios de Seguimiento , Estudios Retrospectivos , Vértigo/etiología , Canales Semicirculares/diagnóstico por imagen , Canales Semicirculares/cirugía
5.
Front Surg ; 10: 1293616, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38098476

RESUMEN

Introduction: An optimal placement of bone conduction implants can provide more efficient mechanical transmission to the cochlea if placed in regions with greater bone column density. The aim of this study was to test this hypothesis and to determine the clinical potential of preoperative bone column density assessment for optimal implant placement. Methods: Five complete cadaver heads were scanned with quantitative computed tomography imaging to create topographic maps of bone density based on the column density index (CODI). Laser Doppler vibrometry was used to measure cochlear promontory acceleration under bone conduction stimulation in different locations on the temporal bone, using a bone-anchored hearing aid transducer at frequencies ranging from 355 Hz to 10 kHz. Results: We found a statistically significant association between CODI levels and the accelerance of the cochlear promontory throughout the frequency spectrum, with an average increase of 0.6 dB per unit of CODI. The distance between the transducer and the cochlear promontory had no statistically significant effect on the overall spectrum. Discussion: We highlight the importance of bone column density in relation to the mechanical transmission efficiency of bone conduction implants. It may be worthwhile to consider column density in preoperative planning in clinical practice.

6.
Audiol Res ; 13(5): 730-740, 2023 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-37887846

RESUMEN

OBJECTIVE: The transmastoid plugging of a superior semicircular canal is considered a safe and effective technique for the management of superior semicircular canal dehiscence (SSCD). The aim of this meta-analysis is to assess the postoperative hearing outcomes after the transmastoid plugging of the superior semicircular canal. Search method and data sources: A systematic database search was performed on the following databases until 30 January 2023: MEDLINE, Embase, Cochrane Library, Web of Science, CINAHL, ICTRP, and clinicaltrials.gov. A systematic literature review and meta-analysis of the pooled data were conducted. We also included a consecutive case series with SCDS for those who underwent transmastoid plugging treatment at our clinic. RESULTS: We identified 643 citations and examined 358 full abstracts and 88 full manuscripts. A total of 16 studies were eligible for the systematic review and 11 studies for the meta-analysis. Furthermore, 159 ears (152 patients) were included. The postoperative mean air conduction threshold remained unchanged (mean difference, 2.89 dB; 95% CI: -0.05, 5.84 dB, p = 0.58), while the mean bone conduction threshold was significantly worse (mean difference, -3.53 dB; 95% CI, -6.1, -0.95 dB, p = 0.9). CONCLUSION: The transmastoid plugging technique for superior semicircular canal dehiscence syndrome, although minimally worsening the inner ear threshold, is a safe procedure in terms of hearing preservation and satisfactory symptom relief.

7.
Front Neurol ; 14: 1231403, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37745650

RESUMEN

Aim: This study aimed to compare the effectiveness of auditory brainstem response (ABR) and extracochlear electrocochleography (ECochG) in objectively evaluating the coupling efficiency of floating mass transducer (FMT) placement during active middle ear implant (AMEI) surgery. Methods: We enrolled 15 patients (mean age 58.5 ± 19.4 years) with mixed hearing loss who underwent AMEI implantation (seven ossicular chain and eight round window couplings). Before the surgical procedure, an audiogram was performed. We utilized a clinical measurement system to stimulate and record intraoperative ABR and ECochG recordings. The coupling efficiency of the VSB was evaluated through ECochG and ABR threshold measurements. Postoperatively, we conducted an audiogram and a vibrogram. Results: In all 15 patients, ABR threshold testing successfully determined intraoperative coupling efficiency, while ECochG was successful in only eight patients. In our cohort, ABR measurements were more practical, consistent, and robust than ECochG measurements. Coupling efficiency, calculated as the difference between vibrogram thresholds and postoperative bone conduction thresholds, was found to be more accurately predicted by ABR measurements (p = 0.016, R2 = 0.37) than ECochG measurements (p = 0.761, R2 = 0.02). We also found a non-significant trend toward better results with ossicular chain coupling compared to round window coupling. Conclusion: Our findings suggest that ABR measurements are more practical, robust, and consistent than ECochG measurements for determining coupling efficiency during FMT placement surgery. The use of ABR measurements can help to identify the optimal FMT placement, especially with round window coupling. Finally, we offer normative data for both techniques, which can aid other clinical centers in using intraoperative monitoring for AMEI placement.

8.
Front Neurol ; 14: 1181539, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37621854

RESUMEN

Introduction: Intracochlear electrocochleography (ECochG) is increasingly being used to measure residual inner ear function in cochlear implant (CI) recipients. ECochG signals reflect the state of the inner ear and can be measured during implantation and post-operatively. The aim of our study was to apply an objective deep learning (DL)-based algorithm to assess the reproducibility of longitudinally recorded ECochG signals, compare them with audiometric hearing thresholds, and identify signal patterns and tonotopic behavior. Methods: We used a previously published objective DL-based algorithm to evaluate post-operative intracochlear ECochG signals collected from 21 ears. The same measurement protocol was repeated three times over 3 months. Additionally, we measured the pure-tone thresholds and subjective loudness estimates for correlation with the objectively detected ECochG signals. Recordings were made on at least four electrodes at three intensity levels. We extracted the electrode positions from computed tomography (CT) scans and used this information to evaluate the tonotopic characteristics of the ECochG responses. Results: The objectively detected ECochG signals exhibited substantial repeatability over a 3-month period (bias-adjusted kappa, 0.68; accuracy 83.8%). Additionally, we observed a moderate-to-strong dependence of the ECochG thresholds on audiometric and subjective hearing levels. Using radiographically determined tonotopic measurement positions, we observed a tendency for tonotopic allocation with a large variance. Furthermore, maximum ECochG amplitudes exhibited a substantial basal shift. Regarding maximal amplitude patterns, most subjects exhibited a flat pattern with amplitudes evenly distributed over the electrode carrier. At higher stimulation frequencies, we observed a shift in the maximum amplitudes toward the basal turn of the cochlea. Conclusions: We successfully implemented an objective DL-based algorithm for evaluating post-operative intracochlear ECochG recordings. We can only evaluate and compare ECochG recordings systematically and independently from experts with an objective analysis. Our results help to identify signal patterns and create a better understanding of the inner ear function with the electrode in place. In the next step, the algorithm can be applied to intra-operative measurements.

9.
Front Neurol ; 14: 1183116, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37288065

RESUMEN

Introduction and objectives: Maintaining the structural integrity of the cochlea and preserving residual hearing is crucial for patients, especially for those for whom electric acoustic stimulation is intended. Impedances could reflect trauma due to electrode array insertion and therefore could serve as a biomarker for residual hearing. The aim of this study is to evaluate the association between residual hearing and estimated impedance subcomponents in a known collective from an exploratory study. Methods: A total of 42 patients with lateral wall electrode arrays from the same manufacturer were included in the study. For each patient, we used data from audiological measurements to compute residual hearing, impedance telemetry recordings to estimate near and far-field impedances using an approximation model, and computed tomography scans to extract anatomical information about the cochlea. We assessed the association between residual hearing and impedance subcomponent data using linear mixed-effects models. Results: The progression of impedance subcomponents showed that far-field impedance was stable over time compared to near-field impedance. Low-frequency residual hearing demonstrated the progressive nature of hearing loss, with 48% of patients showing full or partial hearing preservation after 6 months of follow-up. Analysis revealed a statistically significant negative effect of near-field impedance on residual hearing (-3.81 dB HL per kΩ; p < 0.001). No significant effect of far-field impedance was found. Conclusion: Our findings suggest that near-field impedance offers higher specificity for residual hearing monitoring, while far-field impedance was not significantly associated with residual hearing. These results highlight the potential of impedance subcomponents as objective biomarkers for outcome monitoring in cochlear implantation.

10.
Audiol Res ; 13(3): 459-465, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37366686

RESUMEN

BACKGROUND: With the advent of cochlear implants, tactile aids for the profoundly deaf became obsolete decades ago. Nevertheless, they might still be useful in rare cases. We report the case of a 25-year-old woman with Bosley-Salih-Alorainy Syndrome and bilateral cochlear aplasia. METHODS: After it was determined that cochlear or brainstem implants were not an option and tactile aids were not available anymore, a bone conduction device (BCD) on a softband was tried as a tactile aid. The usual retroauricular position and a second position close to the wrist, preferred by the patient, were compared. Sound detection thresholds were measured with and without the aid. Additionally, three bilaterally deaf adult cochlear implant users were tested under the same conditions. RESULTS: At 250-1000 Hz, sounds were perceived as vibrations above approximately 45-60 dB with the device at the wrist. Thresholds were approximately 10 dB poorer when placed retroauricularly. Differentiation between different sounds seemed difficult. Nevertheless, the patient uses the device and can perceive loud sounds. CONCLUSIONS: Cases where the use of tactile aids may make sense are probably very rare. The use of BCD, placed, e.g., at the wrist, may be useful, but sound perception is limited to low frequencies and relatively loud levels.

11.
Ear Hear ; 44(6): 1379-1388, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37157125

RESUMEN

OBJECTIVES: Reliable determination of cochlear implant electrode positions shows promise for clinical applications, including anatomy-based fitting of audio processors or monitoring of electrode migration during follow-up. Currently, electrode positioning is measured using radiography. The primary objective of this study is to extend and validate an impedance-based method for estimating electrode insertion depths, which could serve as a radiation-free and cost-effective alternative to radiography. The secondary objective is to evaluate the reliability of the estimation method in the postoperative follow-up over several months. DESIGN: The ground truth insertion depths were measured from postoperative computed tomography scans obtained from the records of 56 cases with an identical lateral wall electrode array. For each of these cases, impedance telemetry records were retrieved starting from the day of implantation up to a maximum observation period of 60 mo. Based on these recordings, the linear and angular electrode insertion depths were estimated using a phenomenological model. The estimates obtained were compared with the ground truth values to calculate the accuracy of the model. RESULTS: Analysis of the long-term recordings using a linear mixed-effects model showed that postoperative tissue resistances remained stable throughout the follow-up period, except for the two most basal electrodes, which increased significantly over time (electrode 11: ~10 Ω/year, electrode 12: ~30 Ω/year). Inferred phenomenological models from early and late impedance telemetry recordings were not different. The insertion depth of all electrodes was estimated with an absolute error of 0.9 mm ± 0.6 mm or 22° ± 18° angle (mean ± SD). CONCLUSIONS: Insertion depth estimations of the model were reliable over time when comparing two postoperative computed tomography scans of the same ear. Our results confirm that the impedance-based position estimation method can be applied to postoperative impedance telemetry recordings. Future work needs to address extracochlear electrode detection to increase the performance of the method.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Humanos , Impedancia Eléctrica , Reproducibilidad de los Resultados , Cóclea/cirugía , Implantación Coclear/métodos
12.
IEEE Trans Biomed Eng ; 70(11): 3137-3146, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37195836

RESUMEN

Electrocochleography (ECochG) is increasingly used to monitor the inner ear function of cochlear implant (CI) patients during surgery. Current ECochG-based trauma detection shows low sensitivity and specificity and depends on visual analysis by experts. Trauma detection could be improved by including electric impedance data recorded simultaneously with the ECochG. However, combined recordings are rarely used because the impedance measurements produce artifacts in the ECochG. In this study, we propose a framework for automated real-time analysis of intraoperative ECochG signals using Autonomous Linear State-Space Models (ALSSMs). We developed ALSSM based algorithms for noise reduction, artifact removal, and feature extraction in ECochG. Feature extraction includes local amplitude and phase estimations and a confidence metric over the presence of a physiological response in a recording. We tested the algorithms in a controlled sensitivity analysis using simulations and validated them with real patient data recorded during surgeries. The results from simulation data show that the ALSSM method provides improved accuracy in the amplitude estimation together with a more robust confidence metric of ECochG signals compared to the state-of-the-art methods based on the fast Fourier transform (FFT). Tests with patient data showed promising clinical applicability and consistency with the findings from the simulations. We showed that ALSSMs are a valid tool for real-time analysis of ECochG recordings. Removal of artifacts using ALSSMs enables simultaneous recording of ECochG and impedance data. The proposed feature extraction method provides the means to automate the assessment of ECochG. Further validation of the algorithms in clinical data is needed.

13.
Sci Data ; 10(1): 157, 2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36949075

RESUMEN

Electrocochleography (ECochG) measures electrophysiological inner ear potentials in response to acoustic stimulation. These potentials reflect the state of the inner ear and provide important information about its residual function. For cochlear implant (CI) recipients, we can measure ECochG signals directly within the cochlea using the implant electrode. We are able to perform these recordings during and at any point after implantation. However, the analysis and interpretation of ECochG signals are not trivial. To assist the scientific community, we provide our intracochlear ECochG data set, which consists of 4,924 signals recorded from 46 ears with a cochlear implant. We collected data either immediately after electrode insertion or postoperatively in subjects with residual acoustic hearing. This data descriptor aims to provide the research community access to our comprehensive electrophysiological data set and algorithms. It includes all steps from raw data acquisition to signal processing and objective analysis using Deep Learning. In addition, we collected subject demographic data, hearing thresholds, subjective loudness levels, impedance telemetry, radiographic findings, and classification of ECochG signals.


Asunto(s)
Audiometría de Respuesta Evocada , Cóclea , Implantes Cocleares , Humanos , Cóclea/fisiología , Implantación Coclear , Aprendizaje Profundo
14.
IEEE Trans Biomed Eng ; 70(3): 860-866, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36063524

RESUMEN

OBJECTIVE: In conventional cochlear implantation, the insertion of the electrode array is strongly affected by the local anatomy and human kinematics. Herein, we present a concept for an insertion tool that allows to optimize the insertion trajectory beyond anatomical constraints and stabilizes the electrode array in manual implantation. A novel sleeve-based design allows the instrument to be compliant and potentially protective to intracochlear structures, while a tear-open mechanism allows it to be removed after insertion by simply retracting the tool. METHODS: Conventional and tool-guided manual insertions were performed by expert cochlear implant surgeons in an analog temporal bone model that allows to simultaneously record intracochlear pressure, insertion forces and electrode array deformation. RESULTS: Comparison between conventional and tool-guided insertions demonstrate a substantial reduction of maximum insertion forces, force variations, transverse intracochlear electrode array movement, and pressure transients. CONCLUSION: The presented tool can be utilized in manual cochlear implantation and significantly improves key metrics associated with intracochlear trauma. SIGNIFICANCE: The instrument may ultimately help improve hearing outcomes in cochlear implantation. The versatile design may be used in both manual cochlear implantation and motorized and robotic insertion, as well as image-guided surgery.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Humanos , Cóclea/cirugía , Hueso Temporal/cirugía , Fenómenos Mecánicos
15.
Clin Case Rep ; 10(12): e6694, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36583197

RESUMEN

We present the case of a 65 years old patient who developed a complete, sensorineural hearing loss on the right side due to an intravestibular schwannoma. Our video shows a transcanal, endoscopic approach with complete schwannoma removal on the right side, subsequent e-BERA recordings, and cochlear implantation.

16.
Front Neurol ; 13: 943816, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36105773

RESUMEN

Introduction: Electrocochleography (ECochG) measures inner ear potentials in response to acoustic stimulation. In patients with cochlear implant (CI), the technique is increasingly used to monitor residual inner ear function. So far, when analyzing ECochG potentials, the visual assessment has been the gold standard. However, visual assessment requires a high level of experience to interpret the signals. Furthermore, expert-dependent assessment leads to inconsistency and a lack of reproducibility. The aim of this study was to automate and objectify the analysis of cochlear microphonic (CM) signals in ECochG recordings. Methods: Prospective cohort study including 41 implanted ears with residual hearing. We measured ECochG potentials at four different electrodes and only at stable electrode positions (after full insertion or postoperatively). When stimulating acoustically, depending on the individual residual hearing, we used three different intensity levels of pure tones (i.e., supra-, near-, and sub-threshold stimulation; 250-2,000 Hz). Our aim was to obtain ECochG potentials with differing SNRs. To objectify the detection of CM signals, we compared three different methods: correlation analysis, Hotelling's T2 test, and deep learning. We benchmarked these methods against the visual analysis of three ECochG experts. Results: For the visual analysis of ECochG recordings, the Fleiss' kappa value demonstrated a substantial to almost perfect agreement among the three examiners. We used the labels as ground truth to train our objectification methods. Thereby, the deep learning algorithm performed best (area under curve = 0.97, accuracy = 0.92), closely followed by Hotelling's T2 test. The correlation method slightly underperformed due to its susceptibility to noise interference. Conclusions: Objectification of ECochG signals is possible with the presented methods. Deep learning and Hotelling's T2 methods achieved excellent discrimination performance. Objective automatic analysis of CM signals enables standardized, fast, accurate, and examiner-independent evaluation of ECochG measurements.

17.
J Vis Exp ; (184)2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35786698

RESUMEN

Robot-assisted systems offer great potential for gentler and more precise cochlear implantation. In this article, we provide a comprehensive overview of the clinical workflow for robotic cochlear implantation using a robotic system specifically developed for a minimally invasive, direct cochlear access. The clinical workflow involves experts from various disciplines and requires training to ensure a smooth and safe procedure. The protocol briefly summarizes the history of robotic cochlear implantation. The clinical sequence is explained in detail, beginning with the assessment of patient eligibility and covering surgical preparation, preoperative planning with the special planning software, drilling of the middle ear access, intraoperative imaging to confirm the trajectory, milling of the inner ear access, insertion of the electrode array, and implant management. The steps that require special attention are discussed. As an example, the postoperative outcome of robotic cochlear implantation in a patient with advanced otosclerosis is presented. Finally, the procedure is discussed in the context of the authors' experience.


Asunto(s)
Implantación Coclear , Oído Interno , Procedimientos Quirúrgicos Robotizados , Robótica , Cóclea/cirugía , Implantación Coclear/métodos , Oído Interno/cirugía , Humanos
18.
Front Neurol ; 13: 886171, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35832176

RESUMEN

Introduction and Objectives: Among cochlear implant candidates, an increasing number of patients are presenting with residual acoustic hearing. To monitor the postoperative course of structural and functional preservation of the cochlea, a reliable objective biomarker would be desirable. Recently, impedance telemetry has gained increasing attention in this field. The aim of this study was to investigate the postoperative course of the residual acoustic hearing and clinical impedance in patients with long electrode arrays and to explore the applicability of impedance telemetry for monitoring residual hearing. Methods: We retrospectively analyzed records of 42 cochlear implant recipients with residual hearing covering a median postoperative follow-up of 25 months with repeated simultaneous pure tone audiometry and impedance telemetry. We used a linear mixed-effects model to estimate the relation between clinical electrode impedance and residual hearing. Besides the clinical impedance, the follow-up time, side of implantation, gender, and age at implantation were included as fixed effects. An interaction term between impedance and follow-up time, as well as subject-level random intercepts and slopes, were included. Results: Loss of residual hearing occurred either during surgery or within the first 6 post-operative months. Electrode contacts inserted further apically (i.e., deeper) had higher impedances, independent of residual hearing. The highest impedances were measured 1 month postoperatively and gradually decreased over time. Basal electrodes were more likely to maintain higher impedance. Follow-up time was significantly associated with residual hearing. Regardless of the time, we found that a 1 kΩ increase in clinical impedance was associated with a 4.4 dB deterioration of residual hearing (p < 0.001). Conclusion: Pure tone audiometry is the current gold standard for monitoring postoperative residual hearing. However, the association of clinical impedances with residual hearing thresholds found in our study could potentially be exploited for objective monitoring using impedance telemetry. Further analysis including near-field related impedance components could be performed for improved specificity to local immune responses.

19.
Int J Pediatr Otorhinolaryngol ; 159: 111204, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35696773

RESUMEN

INTRODUCTION: The preoperative determination of suitable electrode array lengths for cochlear implantation in inner ear malformations is a matter of debate. The choice is usually based on individual experience and the use of intraoperative probe electrodes. The purpose of this case series was to evaluate the applicability and precision of an angular insertion depth (AID) prediction method, based on a single measurement of the cochlear base length (CBL). METHODS: We retrospectively measured the CBL in preoperative computed tomography (CT) images in 10 ears (8 patients) with incomplete partition type 2 malformation. With the known electrode length (linear insertion depth, LID) the AID at full insertion was retrospectively predicted for each ear with a heuristic equation derived from non-malformed cochleae. Using the intra- or post-implantation cone beam CT images, the actual AID was assessed and compared. The deviations of the predicted from the actual insertion angles were quantified (clinical prediction error) to assess the precision of this single-measure estimation. RESULTS: Electrode arrays with 15 mm (n = 3), 19 mm (n = 2), 24 mm (n = 3), and 26 mm (n = 2) length were implanted. Postoperative AIDs ranged from 211° to 625°. Clinical AID prediction errors from -64° to 62° were observed with a mean of 0° (SD of 44°). In two ears with partial insertion of the electrode, the predicted AID was overestimated. The probe electrode was intraoperatively used in 9/10 cases. CONCLUSION: The analyzed method provides good predictions of the AID based on LID and CBL. It does not account for incomplete insertions, which lead to an overestimation of the AID. The probe electrode is useful and well established in clinical practice. The investigated method could be used for patient-specific electrode length selection in future patients.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Cóclea/diagnóstico por imagen , Cóclea/cirugía , Implantación Coclear/métodos , Electrodos Implantados , Humanos , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos
20.
JMIR Res Protoc ; 11(6): e40527, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35763805

RESUMEN

[This corrects the article DOI: 10.2196/38407.].

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...