Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Toxics ; 9(8)2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34437492

RESUMEN

The aim of this study was to analyze the impact of three concentrations of a pesticide mixture on the first development stages of rainbow trout (Oncorhynchus mykiss). The mixture was made up of three commonly used pesticides in viticulture: glyphosate (GLY), chlorpyrifos (CPF) and copper sulfate (Cu). Eyed stage embryos were exposed for 3 weeks to three concentrations of the pesticide mixture. Lethal and sub-lethal effects were assessed through a number of phenotypic and molecular endpoints including survival, hatching delay, hatching success, biometry, swimming activity, DNA damage (Comet assay), lipid peroxidation (TBARS), protein carbonyl content and gene expression. Ten target genes involved in antioxidant defenses, DNA repair, mitochondrial metabolism and apoptosis were analyzed using real-time RT-qPCR. No significant increase of mortality, half-hatch, growth defects, TBARS and protein carbonyl contents were observed whatever the pesticide mixture concentration. In contrast, DNA damage and swimming activity were significantly more elevated at the highest pesticide mixture concentration. Gene transcription was up-regulated for genes involved in detoxification (gst and mt1), DNA repair (ogg1), mitochondrial metabolism (cox1 and 12S), and cholinergic system (ache). This study highlighted the induction of adaptive molecular and behavioral responses of rainbow trout larvae when exposed to environmentally realistic concentrations of a mixture of pesticides.

2.
Aquat Toxicol ; 239: 105937, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34450521

RESUMEN

Petroleum hydrocarbons are widely used and transported, increasing the risks of spills to the environment. Although conventional oils are the most commonly produced, the production of unconventional oils (i.e. diluted bitumen or dilbit) is increasing. In this study, we compared the effects of conventional oils (Arabian Light and Lloydminster) and dilbits (Bluesky and Clearwater) on early life stages of a salmonid. To this end, aqueous fractions (WAF: water accommodated fraction) of these oils were extracted using mountain spring water. Rainbow trout (Oncorhynchus mykiss) larvae were exposed to 10 and 50% dilutions of these WAFs from hatching (340 DD; degree days) until yolk sac resorption (541 DD). Exposure to WAFs increased skeletal malformations (both dilbits) and hemorrhage (both conventional oils and Bluesky) and decreased head growth (Arabian Light). In addition, increases in EROD activity and DNA damage were measured for all oils and an increase in cyp1a gene expression was measured for Arabian Light, Bluesky and Clearwater. The PAH and C10C50 concentrations were positively correlated to total larval EROD activity, whereas concentrations of total hydrocarbons, VOCs, PAHs, and C10C50 were positively correlated to cyp1a expression. Total hydrocarbon, VOC, and C10C50 concentrations were also negatively correlated to larval growth. This study supports that petroleum hydrocarbons are toxic to early developmental stages of rainbow trout and show that their degree and spectrum of toxicity depends on their chemical composition.


Asunto(s)
Oncorhynchus mykiss , Petróleo , Contaminantes Químicos del Agua , Animales , Hidrocarburos/toxicidad , Aceites , Petróleo/toxicidad , Contaminantes Químicos del Agua/toxicidad
3.
Environ Toxicol Chem ; 40(11): 3092-3102, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34329515

RESUMEN

Chlorpyrifos (CPF), an organophosphorous pesticide, can be found in aquatic ecosystems at concentrations of up to several hundred nanograms per liter because of water runoff from treated crops. While some studies have shown that low concentrations of CPF may have adverse effects on aquatic species, comparatively little is known about its effect on fish embryos and larvae. To investigate the developmental effects of CPF, rainbow trout (Oncorhynchus mykiss) eyed-stage embryos were exposed in semistatic conditions to 0.3 and 3 µg/L of CPF up to the end of the sac-fry stage, 3 weeks, at 12 °C. Several endpoints were analyzed including survival, hatching delay, hatching success, biometry, swimming activity, DNA damage, lipid peroxidation, protein carbonyl content, acetylcholinesterase (AChE) activity, and gene expression. At the end of the 3-week exposure, larvae exposed to the highest concentration of CPF were less mobile compared to the control and the lowest CPF conditions. No significant differences in AChE activity were observed in either set of CPF conditions compared to control, but it was significantly reduced for larvae exposed to 3 µg/L compared to those exposed to 0.3 µg/L of CPF. Expression of genes that encoded estrogen receptor beta was downregulated for larvae exposed to both CPF concentrations. Expression of cytochrome P450 family 19 subfamily A member 1 was also significantly repressed but only on larvae exposed to the highest concentration of CPF. Our results indicated that subchronic exposure to environmental concentrations of CPF could lead to sublethal effects on early-life stages of rainbow trout, especially effects on swimming activity that could affect foraging activity and escaping from predators. Environ Toxicol Chem 2021;40:3092-3102. © 2021 SETAC.


Asunto(s)
Cloropirifos , Oncorhynchus mykiss , Contaminantes Químicos del Agua , Acetilcolinesterasa/metabolismo , Animales , Cloropirifos/toxicidad , Ecosistema , Larva , Oncorhynchus mykiss/metabolismo , Carbonilación Proteica , Natación , Contaminantes Químicos del Agua/toxicidad
4.
Aquat Toxicol ; 216: 105291, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31525644

RESUMEN

Most pesticides used in agriculture end up in the aquatic environment through runoff and leaching of treated crops. One of the most commonly used herbicides is glyphosate. This compound or its metabolites are frequently detected in surface water in Europe. In the present study, in vivo and in vitro studies were carried out using the early life stages of rainbow trout (Oncorhynchus mykiss) and the cell line RTL-W1 (a liver cell line from rainbow trout) to characterize the toxic effects of glyphosate at environmentally-realistic concentrations. Both studies were performed using the commercial formulation Roundup® GT Max, and technical-grade glyphosate for the in vitro study. Eyed-stage embryos were exposed for 3 weeks to sub-lethal concentrations (0.1 and 1 mg/L) of glyphosate using Roundup. Numerous toxicity endpoints were recorded such as survival, hatching success, larval biometry, developmental abnormalities, swimming activity, genotoxicity (formamidopyrimidine DNA-glycosylase Fpg-modified comet assay), lipid peroxidation (TBARS), protein carbonyls and target gene transcription. Concentrations neither affected embryonic or larval survival nor increased developmental abnormalities. However, a significant decrease was observed in the head size of larvae exposed to 1 mg/L of glyphosate. In addition, a significant increase in mobility was observed for larvae exposed to glyphosate at 0.1 mg/L. TBARS levels were significantly decreased on larvae exposed to 1 mg/L (a.i.), and cat and cox1 genes were differently transcribed from controls. DNA damage was detected by the Fpg-modified comet assay in RTL-W1 cell line exposed to the technical-grade glyphosate and Roundup formulation. The results suggest that chronic exposure to glyphosate, at environmental concentrations, could represent a potential risk for early life stages of fish.


Asunto(s)
Glicina/análogos & derivados , Herbicidas/toxicidad , Estadios del Ciclo de Vida/efectos de los fármacos , Hígado/citología , Oncorhynchus mykiss/crecimiento & desarrollo , Animales , Células Sanguíneas/metabolismo , Gatos , Muerte Celular/efectos de los fármacos , Línea Celular , Ensayo Cometa , Daño del ADN , Embrión no Mamífero/efectos de los fármacos , Exposición a Riesgos Ambientales , Regulación de la Expresión Génica/efectos de los fármacos , Glicina/toxicidad , Larva/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Hígado/efectos de los fármacos , Mutágenos/toxicidad , Oncorhynchus mykiss/sangre , Oncorhynchus mykiss/embriología , Carbonilación Proteica/efectos de los fármacos , Natación , Contaminantes Químicos del Agua/toxicidad , Glifosato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...