Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 36(6): e2307553, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37769647

RESUMEN

In many cases, the hybridization of two or more excitation modes in solids has led to new and useful dispersion relations of waves. Well-studied examples are phonon polaritons, plasmon polaritons, particle-plasmon polaritons, cavity polaritons, and magnetic resonances at optical frequencies. In all of these cases, the lowest propagating mode couples to a finite-frequency localized resonance. Herein, the unusual metamaterial phonon dispersion relations arising from the hybridization of an ordinary acoustical phonon mode with a back-folded soft or easy phonon mode of a monomode elastic metamaterial are discussed. Conceptually, the single easy mode can have strictly zero wave velocity. In reality, its wave velocity is very much smaller than that of all other modes. Considering polymeric three-dimensional printed elastic monomode metamaterials at ultrasound frequencies, it is shown theoretically and experimentally that the resulting pronounced avoided crossing, with a frequency splitting comparable to the mid-frequency, leads to backward-wave behavior for the lowest band over a broad frequency range, conceptually at zero loss.

2.
Adv Mater ; 36(3): e2306468, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37681744

RESUMEN

3D printing with light is enabled by the photochemistry underpinning it. Without fine control over the ability to photochemically gate covalent bond formation by the light at a certain wavelength and intensity, advanced photoresists with functions spanning from on-demand degradability, adaptability, rapid printing speeds, and tailored functionality are impossible to design. Herein, recent advances in photoresist design for light-driven 3D printing applications are critically assessed, and an outlook of the outstanding challenges and opportunities is provided. This is achieved by classing the discussed photoresists in chemistries that function photoinitiator-free and those that require a photoinitiator to proceed. Such a taxonomy is based on the efficiency with which photons are able to generate covalent bonds, with each concept featuring distinct advantages and drawbacks.

3.
Rep Prog Phys ; 86(9)2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37343550

RESUMEN

Mechanical metamaterials, also known as architected materials, are rationally designed composites, aiming at elastic behaviors and effective mechanical properties beyond ('meta') those of their individual ingredients-qualitatively and/or quantitatively. Due to advances in computational science and manufacturing, this field has progressed considerably throughout the last decade. Here, we review its mathematical basis in the spirit of a tutorial, and summarize the conceptual as well as experimental state-of-the-art. This summary comprises disordered, periodic, quasi-periodic, and graded anisotropic functional architectures, in one, two, and three dimensions, covering length scales ranging from below one micrometer to tens of meters. Examples include extreme ordinary linear elastic behavior from artificial crystals, e.g. auxetics and pentamodes, 'negative' effective properties, behavior beyond classical linear elasticity, e.g. arising from local resonances, chirality, beyond-nearest-neighbor interactions, quasi-crystalline mechanical metamaterials, topological band gaps, cloaking based on coordinate transformations and on scattering cancelation, seismic protection, nonlinear and programmable metamaterials, as well as space-time-periodic architectures.

4.
Adv Mater ; 35(18): e2211801, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36787442

RESUMEN

In classical Cauchy elasticity, 3D materials exhibit six eigenmodes of deformation. Following the 1995 work of Milton and Cherkaev, extremal elastic materials can be classified by the number of eigenmodes, N, out of these six that are "easy". Using Greek number words, this leads to hexamode (N = 6), pentamode (N = 5), tetramode (N = 4), trimode (N = 3), dimode (N = 2), and monomode (N = 1) materials. While hexamode materials are unstable in all regards, the possibility of pentamode metamaterials ("meta-fluids") has attracted considerable attention throughout the last decade. Here, inspired by the 2021 theoretical work of Wei, Liu, and Hu, microstructured 3D polymer-based tetramode metamaterials are designed and characterized by numerical band-structure calculations, fabricated by laser printing, characterized by ultrasound experiments, and compared to the theoretical ideal. An application in terms of a compact and broadband polarizer for acoustical phonons at ultrasound frequencies is demonstrated.

5.
Nat Commun ; 14(1): 1103, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36843156

RESUMEN

Printed organic and inorganic electronics continue to be of large interest for sensors, bioelectronics, and security applications. Many printing techniques have been investigated, albeit often with typical minimum feature sizes in the tens of micrometer range and requiring post-processing procedures at elevated temperatures to enhance the performance of functional materials. Herein, we introduce laser printing with three different inks, for the semiconductor ZnO and the metals Pt and Ag, as a facile process for fabricating printed functional electronic devices with minimum feature sizes below 1 µm. The ZnO printing is based on laser-induced hydrothermal synthesis. Importantly, no sintering of any sort needs to be performed after laser printing for any of the three materials. To demonstrate the versatility of our approach, we show functional diodes, memristors, and a physically unclonable function based on a 6 × 6 memristor crossbar architecture. In addition, we realize functional transistors by combining laser printing and inkjet printing.

6.
Phys Rev Lett ; 130(3): 036201, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36763403

RESUMEN

Electroluminescence from single molecules adsorbed on a conducting surface imposes conflicting demands for the molecule-electrode coupling. To conduct electrons, the molecular orbitals need to be hybridized with the electrodes. To emit light, they need to be decoupled from the electrodes to prevent fluorescence quenching. Here, we show that fully quenched 2,6-core-substituted naphthalene diimide derivative in a self-assembled monolayer directly deposited on a Au(111) surface can be activated with the tip of a scanning tunneling microscope to decouple the relevant frontier orbitals from the metallic substrate. In this way, individual molecules can be driven from a strongly hybridized state with quenched luminescence to a light-emitting state. The emission performance compares in terms of quantum efficiency, stability, and reproducibility to that of single molecules deposited on thin insulating layers. Quantum chemical calculations suggest that the emitted light originates from the singly charged cationic pair of the molecules.

7.
Adv Mater ; 35(15): e2209988, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36655553

RESUMEN

Metamaterials are artificial materials in which the atoms of ordinary solids are replaced by tailored functional building blocks. Therefore, previous work has emphasized tailoring the inside of the building blocks, for example, by exploiting local resonances, to realize unusual effective metamaterial properties. However, the wave properties of a metamaterial are not only determined by its building blocks but also by the interactions between these building blocks. Here, reconfigurable "plug-and-play" electromagnetic metamaterials are introduced for which the building blocks are essentially trivial standard bayonet Neill-Concelman (BNC) connectors and the effective metamaterial properties are solely achieved by tailoring the local and especially the nonlocal interactions mediated by standard coaxial cables. Unprecedented dispersion relations of the lowest band with multiple regions of slow waves and backward waves are demonstrated. Importantly, the dispersion relation of such metamaterials dominated by nonlocal interactions is not limited by the principle of causality in the same way as for metamaterials designed by local resonances of building blocks.

8.
Artículo en Inglés | MEDLINE | ID: mdl-35849651

RESUMEN

Nanoporous materials relying on supramolecular liquid crystals (LCs) are excellent candidates for size- and charge-selective membranes. However, whether they can be manufactured using printing technologies remained unexplored so far. In this work, we develop a new approach for the fabrication of ordered nanoporous microstructures based on supramolecular LCs using two-photon laser printing. In particular, we employ photo-cross-linkable hydrogen-bonded complexes, that self-assemble into columnar hexagonal (Colh) mesophases, as the base of our printable photoresist. The presence of photopolymerizable groups in the periphery of the molecules enables the printability using a laser. We demonstrate the conservation of the Colh arrangement and of the adsorptive properties of the materials after laser microprinting, which highlights the potential of the approach for the fabrication of functional nanoporous structures with a defined geometry. This first example of printable Colh LC should open new opportunities for the fabrication of functional porous microdevices with potential application in catalysis, filtration, separation, or molecular recognition.

9.
Diagnostics (Basel) ; 12(6)2022 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-35741201

RESUMEN

PURPOSE: This study intends to establish a study protocol for the quantitative magnetic resonance imaging (qMRI) measurement of biochemical changes in knee cartilage induced by mechanical stress during alpine skiing with the implementation of new spring-loaded ski binding. METHODS: The MRI-knee-scans (T2*-mapping) of four skiers using a conventional and a spring-loaded ski binding system, alternately, were acquired before and after 1 h/4 h of exposure to alpine skiing. Intrachondral T2* analysis on 60 defined regions of interest in the femorotibial knee joint (FTJ) was conducted. Intra- and interobserver variability and relative changes in the cartilage T2* signal and thickness were calculated. RESULTS: A relevant decrease in the T2* time after 4 h of alpine skiing could be detected at the majority of measurement times. After overnight recovery, the T2* time increased above baseline. Although, the total T2* signal in the superficial cartilage layers was higher than that in the lower ones, no differences between the layers in the T2* changes could be detected. The central and posterior cartilage zones of the FTJ responded with a stronger T2* alteration than the anterior zones. CONCLUSIONS: For the first time, a quantitative MRI study setting could be established to detect early knee cartilage reaction due to alpine skiing. Relevant changes in the T2* time and thus in the intrachondral collagen microstructure and the free water content were observed.

10.
Adv Mater ; 34(6): e2106709, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34800321

RESUMEN

Toward the ambitious goal of manufacturing synthetic cells from the bottom up, various cellular components have already been reconstituted inside lipid vesicles. However, the deterministic positioning of these components inside the compartment has remained elusive. Here, by using two-photon 3D laser printing, 2D and 3D hydrogel architectures are manufactured with high precision and nearly arbitrary shape inside preformed giant unilamellar lipid vesicles (GUVs). The required water-soluble photoresist is brought into the GUVs by diffusion in a single mixing step. Crucially, femtosecond two-photon printing inside the compartment does not destroy the GUVs. Beyond this proof-of-principle demonstration, early functional architectures are realized. In particular, a transmembrane structure acting as a pore is 3D printed, thereby allowing for the transport of biological cargo, including DNA, into the synthetic compartment. These experiments show that two-photon 3D laser microprinting can be an important addition to the existing toolbox of synthetic biology.


Asunto(s)
Células Artificiales , Rayos Láser , Impresión Tridimensional , Biología Sintética , Liposomas Unilamelares
11.
Sci Adv ; 7(49): eabm2189, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34851658

RESUMEN

Previously, rotons were observed in correlated quantum systems at low temperatures, including superfluid helium and Bose-Einstein condensates. Here, following a recent theoretical proposal, we report the direct experimental observation of roton-like dispersion relations in two different three-dimensional metamaterials under ambient conditions. One experiment uses transverse elastic waves in microscale metamaterials at ultrasound frequencies. The other experiment uses longitudinal air-pressure waves in macroscopic channel­based metamaterials at audible frequencies. In both experiments, we identify the roton-like minimum in the dispersion relation that is associated to a triplet of waves at a given frequency. Our work shows that designed interactions in metamaterials beyond the nearest neighbors open unprecedented experimental opportunities to tailor the lowest dispersion branch­while most previous metamaterial studies have concentrated on shaping higher dispersion branches.

12.
J Am Chem Soc ; 143(50): 21113-21126, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34859671

RESUMEN

Predicting wavelength-dependent photochemical reactivity is challenging. Herein, we revive the well-established tool of measuring action spectra and adapt the technique to map wavelength-resolved covalent bond formation and cleavage in what we term "photochemical action plots". Underpinned by tunable lasers, which allow excitation of molecules with near-perfect wavelength precision, the photoinduced reactivity of several reaction classes have been mapped in detail. These include photoinduced cycloadditions and bond formation based on photochemically generated o-quinodimethanes and 1,3-dipoles such as nitrile imines as well as radical photoinitiator cleavage. Organized by reaction class, these data demonstrate that UV/vis spectra fail to act as a predictor for photochemical reactivity at a given wavelength in most of the examined reactions, with the photochemical reactivity being strongly red shifted in comparison to the absorption spectrum. We provide an encompassing perspective of the power of photochemical action plots for bond-forming reactions and their emerging applications in the design of wavelength-selective photoresists and photoresponsive soft-matter materials.

13.
Nat Commun ; 12(1): 6385, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34737301

RESUMEN

The dynamics of nanosystems in solution contain a wealth of information with relevance for diverse fields ranging from materials science to biology and biomedical applications. When nanosystems are marked with fluorophores or strong scatterers, it is possible to track their position and reveal internal motion with high spatial and temporal resolution. However, markers can be toxic, expensive, or change the object's intrinsic properties. Here, we simultaneously measure dispersive frequency shifts of three transverse modes of a high-finesse microcavity to obtain the three-dimensional path of unlabeled SiO2 nanospheres with 300 µs temporal and down to 8 nm spatial resolution. This allows us to quantitatively determine properties such as the polarizability, hydrodynamic radius, and effective refractive index. The fiber-based cavity is integrated in a direct-laser-written microfluidic device that enables the precise control of the fluid with ultra-small sample volumes. Our approach enables quantitative nanomaterial characterization and the analysis of biomolecular motion at high bandwidth.

14.
Adv Mater ; 33(40): e2103205, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34398466

RESUMEN

It is predicted theoretically that a 1D diatomic chain of 3D chiral cells can support a topological bandgap that allows for translating a small time-harmonic axial movement at one end of the chain into a resonantly enhanced large rotation of an edge state at the other end. This edge state is topologically protected such that an arbitrary mass of a mirror at the other end does not shift the eigenfrequency out of the bandgap. Herein, this complex 3D laser-beam-scanner microstructure is realized in fused-silica form. A novel microcasting approach is introduced that starts from a hollow polymer cast made by standard 3D laser nanoprinting. The cast is evacuated and filled with helium, such that a highly viscous commercial glass slurry is sucked in. After UV curing and thermal debinding of the polymer, the fused-silica glass is sintered at 1225 °C under vacuum. Detailed optical measurements reveal a mechanical quality factor of the twist-edge resonance of 2850 at around 278 kHz resonance frequency under ambient conditions. The microcasting approach can likely be translated to many other glasses, to metals and ceramics, and to complex architectures that are not or not yet amenable to direct 3D laser printing.

15.
Nat Commun ; 12(1): 3278, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34078904

RESUMEN

Roton dispersion relations have been restricted to correlated quantum systems at low temperatures, such as liquid Helium-4, thin films of Helium-3, and Bose-Einstein condensates. This unusual kind of dispersion relation provides broadband acoustical backward waves, connected to energy flow vortices due to a "return flow", in the words of Feynman, and three different coexisting acoustical modes with the same polarization at one frequency. By building mechanisms into the unit cells of artificial materials, metamaterials allow for molding the flow of waves. So far, researchers have exploited mechanisms based on various types of local resonances, Bragg resonances, spatial and temporal symmetry breaking, topology, and nonlinearities. Here, we introduce beyond-nearest-neighbor interactions as a mechanism in elastic and airborne acoustical metamaterials. For a third-nearest-neighbor interaction that is sufficiently strong compared to the nearest-neighbor interaction, this mechanism allows us to engineer roton-like acoustical dispersion relations under ambient conditions.

16.
Sci Rep ; 11(1): 9269, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33927254

RESUMEN

Mechanotransduction via yes-associated protein (YAP) is a central mechanism for decision-making in mouse embryonic stem cells (mESCs). Nuclear localization of YAP is tightly connected to pluripotency and increases the cell division rate (CDR). How the geometry of the extracellular environment influences mechanotransduction, thereby YAP localization, and decision-making of single isolated mESCs is largely unknown. To investigate this relation, we produced well-defined 2D and 2.5D microenvironments and monitored CDR and subcellular YAP localization in single mESCs hence excluding cell-cell interactions. By systematically varying size and shape of the 2D and 2.5D substrates we observed that the geometry of the growth environment affects the CDR. Whereas CDR increases with increasing adhesive area in 2D, CDR is highest in small 2.5D micro-wells. Here, mESCs attach to all four walls and exhibit a cross-shaped cell and nuclear morphology. This observation indicates that changes in cell shape are linked to a high CDR. Inhibition of actomyosin activity abrogate these effects. Correspondingly, nuclear YAP localization decreases in inhibitor treated cells, suggesting a relation between cell shape, intracellular forces, and cell division rate. The simplicity of our system guarantees high standardization and reproducibility for monitoring stem cell reactions and allows addressing a variety of fundamental biological questions on a single cell level.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Núcleo Celular/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Fracciones Subcelulares/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , División Celular , Ambiente , Mecanotransducción Celular , Ratones , Células Madre Embrionarias de Ratones/citología , Proteínas Señalizadoras YAP
17.
Nat Commun ; 12(1): 247, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33431911

RESUMEN

3D printing offers enormous flexibility in fabrication of polymer objects with complex geometries. However, it is not suitable for fabricating large polymer structures with geometrical features at the sub-micrometer scale. Porous structure at the sub-micrometer scale can render macroscopic objects with unique properties, including similarities with biological interfaces, permeability and extremely large surface area, imperative inter alia for adsorption, separation, sensing or biomedical applications. Here, we introduce a method combining advantages of 3D printing via digital light processing and polymerization-induced phase separation, which enables formation of 3D polymer structures of digitally defined macroscopic geometry with controllable inherent porosity at the sub-micrometer scale. We demonstrate the possibility to create 3D polymer structures of highly complex geometries and spatially controlled pore sizes from 10 nm to 1000 µm. Produced hierarchical polymers combining nanoporosity with micrometer-sized pores demonstrate improved adsorption performance due to better pore accessibility and favored cell adhesion and growth for 3D cell culture due to surface porosity. This method extends the scope of applications of 3D printing to hierarchical inherently porous 3D objects combining structural features ranging from 10 nm up to cm, making them available for a wide variety of applications.

18.
Sci Rep ; 11(1): 2304, 2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33504911

RESUMEN

For analyzing displacement-vector fields in mechanics, for example to characterize the properties of 3D printed mechanical metamaterials, routine high-precision position measurements are indispensable. For this purpose, nanometer-scale localization errors have been achieved by wide-field optical-image cross-correlation analysis. Here, we bring this approach to atomic-scale accuracy by combining it with well-defined 3D printed marker arrays. By using an air-lens with a numerical aperture of [Formula: see text] and a free working distance of [Formula: see text], and an [Formula: see text] array of markers with a diameter of [Formula: see text] and a period of [Formula: see text], we obtain 2D localization errors as small as [Formula: see text] in [Formula: see text] measurement time ([Formula: see text]). The underlying experimental setup is simple, reliable, and inexpensive, and the marker arrays can easily be integrated onto and into complex architectures during their 3D printing process.

19.
Sci Adv ; 6(39)2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32967835

RESUMEN

Many essential cellular processes are regulated by mechanical properties of their microenvironment. Here, we introduce stimuli-responsive composite scaffolds fabricated by three-dimensional (3D) laser lithography to simultaneously stretch large numbers of single cells in tailored 3D microenvironments. The key material is a stimuli-responsive photoresist containing cross-links formed by noncovalent, directional interactions between ß-cyclodextrin (host) and adamantane (guest). This allows reversible actuation under physiological conditions by application of soluble competitive guests. Cells adhering in these scaffolds build up initial traction forces of ~80 nN. After application of an equibiaxial stretch of up to 25%, cells remodel their actin cytoskeleton, double their traction forces, and equilibrate at a new dynamic set point within 30 min. When the stretch is released, traction forces gradually decrease until the initial set point is retrieved. Pharmacological inhibition or knockout of nonmuscle myosin 2A prevents these adjustments, suggesting that cellular tensional homeostasis strongly depends on functional myosin motors.

20.
Nano Lett ; 20(10): 7600-7605, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32960069

RESUMEN

Interest in electroluminescence of single molecules is stimulated by the prospect of possible applications in novel light emitting devices. Recent studies provide valuable insights into the mechanisms leading to single molecule electroluminescence. Concrete information on how to boost the intensity of the emitted light, however, is rare. By combining scanning tunnelling microscopy (STM) and quantum chemical calculations, we show that the light emission efficiencies of an individual hydrogen-phthalocyanine molecule can be increased by a factor of ≈19 upon charging. This boost in intensity can be explained by the development of a vertical dipole moment normal to the substrate facilitating out-coupling of the local excitation to the far field. As this effect is not related to the specific nature of hydrogen-phthalocyanine, it opens up a general way to increase light emission from molecular junctions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...